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ABSTRACT  17 

Clues from human movement disorders have long suggested that the neurotransmitter dopamine 18 

plays a role in motor control, but how the endogenous dopaminergic system influences 19 

movement is unknown. Here we examined the relationship between dopaminergic signaling and 20 

the timing of reward-related movements in mice. Animals were trained to initiate licking after a 21 

self-timed interval following a start-timing cue; reward was delivered in response to movements 22 

initiated after a criterion time. The movement time was variable from trial-to-trial, as expected 23 
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from previous studies. Surprisingly, dopaminergic signals ramped-up over seconds between the 24 

start-timing cue and the self-timed movement, with variable dynamics that predicted the 25 

movement/reward time on single trials. Steeply rising signals preceded early lick-initiation, 26 

whereas slowly rising signals preceded later initiation. Higher baseline signals also predicted 27 

earlier self-timed movements. Optogenetic activation of dopamine neurons during self-timing 28 

did not trigger immediate movements, but rather caused systematic early-shifting of movement 29 

initiation, whereas inhibition caused late-shifting, as if modulating the probability of movement. 30 

Consistent with this view, the dynamics of the endogenous dopaminergic signals quantitatively 31 

predicted the moment-by-moment probability of movement initiation on single trials. We 32 

propose that ramping dopaminergic signals, likely encoding dynamic reward expectation, can 33 

modulate the decision of when to move. 34 

 35 

INTRODUCTION 36 

What makes us move? Empirically, a few hundred milliseconds before movement, thousands of 37 

neurons in the motor system suddenly become active in concert, and this neural activity is 38 

relayed via spinal and brainstem neurons to recruit muscle fibers that power movement (Shenoy 39 

et al., 2013). Yet just before this period of intense neuronal activity, the motor system is largely 40 

quiescent. How does the brain suddenly and profoundly rouse motor neurons into the 41 

coordinated action needed to trigger movement?  42 

 43 

In the case of movements made in reaction to external stimuli, activity evoked first in sensory 44 

brain areas is presumably passed along to appropriate motor centers to trigger this coordinated 45 

neural activity, thereby leading to movement. But humans and animals can also self-initiate 46 
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movement without overt, external input (Deecke, 1996; Hallett, 2007; Lee and Assad, 2003; 47 

Romo et al., 1992). For example, while reading this page, you may decide without prompting to 48 

reach for your coffee. In that case, the movement cannot be clearly related to an abrupt, 49 

conspicuous sensory cue. What “went off” in your brain that made you reach for your coffee at 50 

this particular moment, as opposed to a moment earlier or later?  51 

 52 

Human movement disorders may provide clues to this mystery. Patients and animal models of 53 

Parkinson’s Disease experience difficulty self-initiating movements, exemplified by 54 

perseveration (Hughes et al., 2013), trouble initiating steps when walking (Bloxham et al., 55 

1984), and problems timing movements (Malapani et al., 1998; Meck, 1986, 2006; Mikhael and 56 

Gershman, 2019). In contrast to these self-generated actions, externally cued reactions are often 57 

less severely affected in Parkinson’s, a phenomenon sometimes referred to as “paradoxical 58 

kinesia” (Barthel et al., 2018; Bloxham et al., 1984). For example, patients’ gait can be 59 

normalized by walking aids that prompt steps in reaction to visual cues displayed on the ground 60 

(Barthel et al., 2018).  61 

 62 

Because the underlying neuropathophysiology of Parkinson’s includes the loss of midbrain 63 

dopaminergic neurons (DANs), the symptomatology of Parkinson’s suggests DAN activity plays 64 

an important role in deciding when to self-initiate movement. Indeed, pharmacological 65 

manipulations of the neurotransmitter dopamine causally and bidirectionally influence 66 

movement timing (Dews and Morse, 1958; Lustig and Meck, 2005; Meck, 1986; Mikhael and 67 

Gershman, 2019; Schuster and Zimmerman, 1961). This can be demonstrated in the context of 68 

self-timed movement tasks, in which subjects reproduce a target-timing interval by making a 69 



 4

movement following a self-timed delay that is referenced to a start-timing cue (Malapani et al., 70 

1998). Species across the animal kingdom, from rodents and birds to primates, can learn these 71 

tasks and produce self-timed movements that occur, on average, at about the target time, 72 

although the exact timing exhibits considerable variability from trial-to-trial (Gallistel and 73 

Gibbon, 2000; Meck, 2006; Mello et al., 2015; Merchant et al., 2013; Rakitin et al., 1998; 74 

Remington et al., 2018; Schuster and Zimmerman, 1961; Sohn et al., 2019; Wang et al., 2018). 75 

In such self-timed movement tasks, decreased dopamine availability/efficacy (e.g., Parkinson’s, 76 

neuroleptic drugs) generally produces late-shifted movements (Malapani et al., 1998; Meck, 77 

1986, 2006; Merchant et al., 2013), whereas high dopamine conditions (e.g., amphetamines) 78 

produce early-shifting (Dews and Morse, 1958; Schuster and Zimmerman, 1961).  79 

 80 

Although exogenous dopamine manipulations can influence timing behavior, it remains unclear 81 

whether endogenous DAN activity is involved in determining when to move. DANs densely 82 

innervate the striatum, where they modulate the activity of spiny projection neurons of the direct 83 

and indirect pathways, which are thought to exert a push-pull influence on movement centers 84 

(Albin et al., 1989; DeLong, 1990; Freeze et al., 2013; Grillner and Robertson, 2016). Most 85 

studies on endogenous DAN activity have focused on reward-related signals, but there are also 86 

reports of movement-related DAN signals. For example, phasic bursts of dopaminergic activity 87 

have been observed just prior to movement onset (within ~500 ms; Coddington and Dudman, 88 

2018, 2019; da Silva et al., 2018; Dodson et al., 2016; Howe and Dombeck, 2016; Wang and 89 

Tsien, 2011), and dopaminergic signals have been reported to reflect more general encoding of 90 

movement kinematics (Barter et al., 2015; Engelhard et al., 2019; Parker et al., 2016). 91 

However, optogenetic activation of dopamine neurons—within physiological range—does not 92 
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elicit immediate movements (Coddington and Dudman, 2018, 2019). We hypothesized that 93 

rather than overtly triggering movements, the ongoing activity of nigrostriatal DANs could 94 

influence movement initiation over longer timescales by controlling or modulating the moment-95 

by-moment decision of when to execute a planned movement.  96 

 97 

To test this hypothesis, we trained mice to make a movement (lick) after a self-timed interval 98 

following a start-timing cue. The mice learned the timed interval, but, as observed in other 99 

species, the exact timing of movement was highly variable from trial-to-trial, spanning seconds. 100 

We exploited this inherent variability by examining how moment-to-moment nigrostriatal DAN 101 

signals differed when animals decided to move relatively early versus late. We found that 102 

dopaminergic signals “ramped up” during the timing interval, with variable dynamics that were 103 

highly predictive of trial-by-trial movement timing, even seconds before the movement occurred. 104 

Because reward was delivered at the time of movement, the ramping dopaminergic signals likely 105 

related to the animal’s expectation of when reward would be available in response to movement. 106 

Furthermore, optogenetic DAN manipulation during the timing interval produced bidirectional 107 

changes in the probability of movement timing, with activation causing a bias toward earlier self-108 

timed movements and suppression causing a bias toward later self-timed movements. These 109 

combined observations suggest a novel role for the dopaminergic system in the timing of 110 

movement initiation, wherein slowly evolving dopaminergic signals, likely driven by reward 111 

expectation, can modulate the moment-to-moment probability of whether a reward-related 112 

movement will occur.  113 

 114 
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RESULTS 115 

We trained head-fixed mice to make self-timed movements to receive juice rewards (Figure 1A). 116 

Animals received an audio/visual start-timing cue and then had to decide when to first-lick in the 117 

absence of further cues. Animals only received juice if they waited a proscribed interval 118 

following the cue before making their first-lick (>3.3 s in most experiments). As expected from 119 

previous studies, the distribution of first-lick timing was broadly distributed over several seconds, 120 

and exhibited the canonical scalar property of timing, as described by Weber’s Law (Figure 1B 121 

and Figure 1—figure supplement 1A-B; Gallistel and Gibbon, 2000). We note this variability 122 

in timing was not imposed on the animal by training it to reproduce a variety of target intervals 123 

(e.g., 2 vs. 5 s), but is rather a natural consequence of timing behavior, even for a single target 124 

interval.  125 

 126 

Our main objective was to exploit the inherent variability in self-timed behavior to examine how 127 

differences in neural activity might relate to variability in movement timing. Nonetheless, the 128 

trained animals well-understood the timing contingencies of the task. In self-timed movement 129 

tasks in which a single movement is used to assess timing, the distributions of movement times 130 

(in both rodents and monkeys) tend to anticipate the target interval, even at the expense of 131 

reward on many trials (Eckard and Kyonka, 2018; Kirshenbaum et al., 2008; Lee and Assad, 132 

2003). In these paradigms, however, once a movement occurs, it removes future opportunities to 133 

move, which creates premature “bias” in the raw timing distributions (Anger, 1956). To correct 134 

this bias, movement times must be normalized by the (ever-diminishing) number of opportunities 135 

to move at each timepoint (Jaldow et al., 1990). This yields the hazard function (the conditional 136 

probability of movement given that movement has not already occurred, as a function of time), 137 
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which is equivalent to the instantaneous probability of movement. For example, on the first day 138 

of training, our animals displayed fairly flat hazard functions, indicating a uniform instantaneous 139 

probability of movement over time—i.e., the animals did not yet understand the timing 140 

contingency (Figure 1C-D). However, after training, the hazard function for our animals peaked 141 

near the target time (either 3.3 or 5 s), suggesting an accurate latent timing process reflected in 142 

the instantaneous movement probability (Figure 1E). Mice trained on a variant of the self-timed 143 

movement task without lamp-off/on events showed no systematic differences in their timing 144 

distributions (Figure 1—figure supplement 1C), suggesting that the mice referenced their timing 145 

to the start-timing cue rather than the lamp-off event.  146 

 147 

When mice were fully trained, we employed fiber photometry to record the activity of 148 

genetically-defined DANs expressing the calcium-sensitive fluorophore GCaMP6f (12 mice, 149 

substantia nigra pars compacta (SNc); Figure 1—figure supplement 2). We controlled for 150 

mechanical/optical artifacts by simultaneously recording fluorescence modulation of a co-151 

expressed, calcium-insensitive fluorophore, tdTomato. We also recorded bodily movements with 152 

neck-muscle EMG, high-speed video, and a back-mounted accelerometer.  153 

 154 

DAN signals ramp up slowly between the start-timing cue and self-timed movement  155 

DAN GCaMP6f fluorescence typically exhibited brief transients following cue onset and 156 

immediately before first-lick onset (Figure 2A), as observed in previous studies (Coddington 157 

and Dudman, 2018; da Silva et al., 2018; Dodson et al., 2016; Howe and Dombeck, 2016; 158 

Schultz et al., 1997). However, during the timed interval, we observed slow “ramping up” of 159 

fluorescence over seconds, with a minimum after the cue-aligned transient and maximum just 160 
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before the lick-related transient. The relatively fast intrinsic decay kinetics of GCaMP6f (t1/2 161 

<100 ms at 37°; Helassa et al., 2016) should not produce appreciable signal integration over the 162 

seconds-long timescales of the ramps we observed.  163 

 164 

We asked whether this ramping differed between trials in which the animal moved relatively 165 

early or late. Strikingly, when we averaged signals pooled by movement time, we observed 166 

systematic differences in the steepness of ramping that were highly predictive of movement 167 

timing (Figure 2B-C). Trials with early first-licks exhibited steep ramping, whereas trials with 168 

later first-licks started from lower fluorescence levels and rose more slowly toward the time of 169 

movement. The fluorescence ramps terminated at nearly the same amplitude, regardless of the 170 

movement time. Ramping dynamics were not evident in control tdTomato signals (Figure 2C), 171 

indicating that the ramping in the GCaMP6f signals was not an optical artifact. The quantitative 172 

relationship between GCaMP6f dynamics and movement time will be addressed in a subsequent 173 

section of this paper. 174 

 175 

Higher pre-cue DAN signals are correlated with earlier self-timed movements 176 

In addition to ramping dynamics, average DAN GCaMP6f signals were correlated with first-lick 177 

timing even before cue-onset, with higher baseline fluorescence predicting earlier first-licks 178 

(Figure 2B-C). This correlation began before the lamp-off event (the 2 s “Baseline” period 179 

before lamp-off; Pearson’s r = -0.63 (95% CI=[-0.92, -0.14]), n=12 mice) and grew stronger 180 

during the “Lamp-Off Interval” between lamp-off and the cue (Pearson’s r = -0.89 (95% CI=[-181 

-0.98, -0.68]), n=12 mice; Figure 2—figure supplement 1A-B). This correlation was 182 

independent of the duration of the lamp-off interval (Figure 2—figure supplement 1C). Because 183 
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dF/F correction methods can potentially distort baseline measurements, we rigorously tested and 184 

validated three different dF/F methods, and we also repeated analyses with raw fluorescence 185 

values compared between pairs of sequential trials with different movement times (Figure 2—186 

figure supplement 2; see Methods). All reported results, including the systematic baseline 187 

differences, were robust to dF/F correction.  188 

 189 

In principle, the amplitude of the baseline signal on a given trial n could be related to the 190 

animal’s behavior during the baseline interval or the outcome of the previous trial. To test this, 191 

we performed four-way ANOVA to compare the main effects of the following factors on the pre-192 

cue signal (averaged for each trial between lamp-off and the start-timing cue, the “lamp-off 193 

interval” (LOI), n=12 mice): 1) presence or absence of spontaneous licking during the LOI; 2) 194 

outcome of the previous trial (rewarded or unrewarded); 3) upcoming movement time on trial n 195 

(categorized as <3.3 s or >3.3 s to provide a simple binary proxy for movement time); and 4) 196 

session number (to account for signal variability across animals and daily sessions). Although the 197 

effects of LOI-licking and previous trial outcome were statistically significant (F(1,18282)=10.7, 198 

p=0.008, ηp
2=5.9·10-4 and F(1,18282)=281.2, p=7.5·10-47, ηp

2=0.015, respectively), the 199 

upcoming movement time had an independent, statistically significant effect (F(1,18282)=63.4, 200 

p=5.9·10-6, ηp
2=0.0035). This raises the possibility of an additional source of variance in baseline 201 

dopaminergic activity that is independent from previous trial events, but potentially influences 202 

the upcoming movement time on that trial.  203 

 204 

Ramping dynamics in other dopaminergic areas and striatal dopamine release 205 
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We found similar ramping dynamics in SNc DAN axon terminals in the dorsolateral striatum 206 

(DLS; Figure 2—figure supplement 3A-B) at a location involved in goal-directed licking 207 

behavior (Sippy et al., 2015). Ramping was also present in GCaMP6f-expressing DAN cell 208 

bodies in the ventral tegmental area (VTA, Figure 2—figure supplement 3C), reminiscent of 209 

mesolimbic ramping signals described in goal-oriented navigation tasks (Howe et al., 2013; Kim 210 

et al., 2019).  211 

 212 

To determine if these movement timing-related signals are available to downstream targets that 213 

may be involved in movement initiation, we monitored dopamine release in the DLS with two 214 

complementary florescent dopamine sensors (dLight1.1 and DA2m) expressed broadly in striatal 215 

cells (Figure 3 and Figure 2—figure supplement 3D-E). The decay kinetics of the two 216 

extracellular dopamine sensors differ somewhat (Patriarchi et al., 2018; Sun et al., 2020), which 217 

we confirmed (dLight1.1 t1/2~75 ms, DA2m t1/2~125 ms; Figure 3—figure supplement 1), yet 218 

both revealed similar timing-related ramping dynamics on average (Figure 3 inset). These 219 

combined data argue that the seconds-long dopaminergic ramping signals were not artifacts of 220 

sluggish temporal responses of the various fluorescent sensors and were ultimately expressed as 221 

ramp-like increases in dopamine release in the striatum.  222 

 223 

First-lick timing-predictive DAN signals are not explained by ongoing body movements 224 

The systematic ramping dynamics and baseline differences were not observed in the tdTomato 225 

optical control channel nor in any of the other movement-control channels, at least on average 226 

(Figure 4), making it unlikely that ramping dynamics resulted from optical artifacts. 227 

Nevertheless, because DANs show transient responses to salient cues and movements 228 
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(Coddington and Dudman, 2018; da Silva et al., 2018; Dodson et al., 2016; Howe and 229 

Dombeck, 2016; Schultz et al., 1997), it is possible that fluorescence signals could reflect the 230 

superposition of dopaminergic responses to multiple task events, including the cue, lick, ongoing 231 

spurious body movements, and hidden cognitive processes like timing. For example, accelerating 232 

spurious movements could, in principle, produce motor-related neural activity that “ramps up” 233 

during the timed interval, perhaps even at different rates on different trials.  234 

 235 

We thus derived a nested generalized linear encoding model of single-trial GCaMP6f signals 236 

(Engelhard et al., 2019; Park et al., 2014; Runyan et al., 2017), a data-driven, statistical 237 

approach designed to isolate and quantify the contributions of task events (timing-independent 238 

predictors) from processes predictive of movement timing (timing-dependent predictors; Figure 239 

5A-B and Figure 5—figure supplement 1A-D). The model robustly detected task-event 240 

GCaMP6f kernels locked to cue, lick and EMG/accelerometer events, but these timing-241 

independent predictors alone were insufficient to capture the rich variability of GCaMP6f signals 242 

for trials with different first-lick times, especially the timing-dependent ramp-slope and baseline 243 

offset (n=12 mice, Figure 5C and Figure 5—figure supplement 1E-G). In contrast, two timing-244 

dependent predictors robustly improved the model: 1) a baseline offset with amplitude linearly 245 

proportional to first-lick time; and 2) a “stretch” feature representing percentages of the timed 246 

interval (Figure 5B-C and  Figure 5—figure supplement 1E). The baseline offset term fit a 247 

baseline level inversely proportional to movement time, and the temporal stretch feature 248 

predicted a ramping dynamic from the time of the cue up to the first-lick, whose slope was 249 

inversely proportional to first-lick time. Similar results were obtained for SNc DAN axon 250 
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terminals in the DLS, VTA DAN cell bodies, and extracellular striatal dopamine release (Figure 251 

5—figure supplement 1H).  252 

 253 

We note that the stretch feature of this GLM makes no assumptions about the underlying shape 254 

of the dopaminergic signal; it only encodes percentages of timing intervals to allow for temporal 255 

“expansion” or “contraction” to fit whatever shape(s) were present in the data. In particular, the 256 

stretch feature cannot produce ramping unless ramping is present in the signal and temporally 257 

scales with the length of the interval. Because this feature empirically found a ramp (although 258 

not constrained to do so), the stretch aspect indicated that the underlying ramping process took 259 

place at different rates for trials with different movement times, at least on average. 260 

 261 

In contrast to the GCaMP6f model, when the same GLM was applied to the tdTomato control 262 

signal, the timing-independent predictors (which could potentially cause optical/mechanical 263 

artifacts—cue onset, first-lick, EMG/accelerometer) improved the model, but timing-dependent 264 

predictors did not (Figure 5C and Figure 5—figure supplement 1F-H). In addition, separate 265 

principal component (PC) analysis revealed ramp-like and baseline-offset-like components that 266 

explained as much as 93% of the variance in DAN signals during the timing interval 267 

(mean: 66%, range: 16-93%), but similar PCs were not present when tdTomato control signals 268 

were analyzed with PCA (mean variance explained: 4%, range: 1.6-15%, Figure 5—figure 269 

supplement 2). 270 

 271 

Single-trial DAN ramping and baseline signals predict movement timing  272 

Given that ramping and baseline-offset signals were not explained by nuisance movements or 273 
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optical artifacts, we asked whether DAN GCaMP6f fluorescence could predict first-lick timing 274 

on single trials. Using a simple threshold-crossing decoding model (Maimon and Assad, 2006), 275 

we found that single-trial GCaMP6f signals were predictive of first-lick time even for low 276 

thresholds intersecting the “base” of the ramp, with the predictive value of the model 277 

progressively improving for higher thresholds (n=12 mice: mean R2 low=0.54, mid=0.71, 278 

high=0.82 (95% CI: low=[0.44,0.64], mid=[0.68,0.75], high=[0.76,0.87]); analysis for one 279 

mouse shown in Figure 6A). We will return to this observation in more detail in the upcoming 280 

section on single-trial dynamics. 281 

 282 

To more thoroughly determine the independent, additional predictive power of DAN baseline 283 

and ramping signals over other task variables (e.g., previous trial first-lick time and reward 284 

outcome, etc.), we derived a nested decoding model for first-lick time (Figure 6A). In this model, 285 

the pre-cue “baseline” was divided into two components: the pre-lamp-off intertrial interval 286 

signal (“ITI”) and the lamp-off to cue interval signal (“LOI”). All predictors contributed to the 287 

predictive power of the model. However, even when we accounted for the contributions of prior 288 

trial history, tdTomato artifacts and baseline GCaMP6f signals, GCaMP6f threshold-crossing 289 

time robustly dominated the model and absorbed much of the variance explained by baseline 290 

dopaminergic signals, alone explaining 10% of the variance in first-lick time on average (range: 291 

1-27%, Figure 6B-D). Alternate formulations of the decoding model produced similar results 292 

(Figure 6—figure supplement 1). 293 

 294 

Characterizing single-trial dopaminergic dynamics 295 

Although the threshold-crossing analysis made no assumptions about the underlying dynamics of 296 
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the GCaMP6f signals on single-trials, in principle, ramping dynamics in averaged neural signals 297 

could be produced from individual trials with a single, discrete “step” occurring at different 298 

times on different trials. Ramping has long been observed in averaged neural signals recorded 299 

during perceptual decision tasks in monkeys, and there has been considerable debate over 300 

whether single-trial responses in these experiments are better classified as “ramps” or a single 301 

“step” (Latimer et al., 2015, 2016; Shadlen et al., 2016; Zoltowski et al., 2019; Zylberberg and 302 

Shadlen, 2016). It has even been suggested that different sampling distributions can produce 303 

opposite model classifications in ground-truth synthetic datasets (Chandrasekaran et al., 2018).  304 

 305 

We attempted to classify single-trial dynamics as a discrete stepping or ramping process with 306 

hierarchical Bayesian models implemented in probabilistic programs (Figure 6—figure 307 

supplement 2A-B). However, like the perceptual decision-making studies, we also found 308 

ambiguous results, with about half of single-trials best classified by a linear ramp and half best 309 

classified by a discrete step dynamic (Figure 6—figure supplement 2C). Nonetheless, three 310 

separate lines of evidence suggest that single trials are better characterized by slowly evolving 311 

ramps:  312 

 313 

First, the relationship of threshold-crossing time to first-lick time is different for the step vs. 314 

ramp models when different threshold levels are sampled (Maimon and Assad, 2006), as 315 

schematized in Figure 6—figure supplement 3A: Increasing slope of this relationship is 316 

consistent with ramps on single trials, but not with a discrete step, which would be expected to 317 

have the same threshold-crossing time regardless of threshold level (Figure 6—figure 318 

supplement 3B). We found that the slope of this relationship increased markedly as the threshold 319 
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level was increased, consistent with the ramp model (n=12 mice: mean slope low=0.46, mid=0.7, 320 

high=0.82 (95% CI: low=[0.37,0.54], mid=[0.66,0.73], high=[0.74,0.88]), Figure 6—figure 321 

supplement 3C).  322 

 323 

Second, if single trials involve a step change occurring at different times from trial-to-trial, then 324 

aligning trials on that step should produce a clear step on average (rather than a ramp; Latimer et 325 

al., 2015). We thus aligned single-trial GCaMP6f signals according to that optimal step position 326 

determined from a Bayesian step model fit for each trial and then averaged the step-aligned 327 

signals across trials. The averaged signals did not resemble a step function, but rather yielded a 328 

sharp transient superimposed on a “background” ramping signal (Figure 6—figure supplement 329 

4A). Step-aligned tdTomato and EMG averages showed a small inflection at the time of the step, 330 

but neither signal showed background ramping. This suggests that the detected “steps” in the 331 

GCaMP6f signals were likely transient movement artifacts superimposed on the slower ramping 332 

dynamic rather than bona fide steps.  333 

 334 

Third, the ideal step model holds that the step occurs at different times from trial-to-trial, 335 

producing a ramping signal when trials are averaged together. In this view, the trial-by-trial 336 

variance of the signal should be maximal at the time at which 50% of the steps have occurred 337 

among all trials, and the signal should be minimal at the beginning and end of the interval (when 338 

no steps or all steps have occurred, respectively). We thus derived the optimal step time for each 339 

trial using the Bayesian step model, and then calculated variance as a function of time within 340 

pools of trials with similar movement times. The signal variance showed a monotonic downward 341 

trend during the timed interval, with a minimum variance at the time of movement rather than at 342 
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the point at which 50% of steps had occurred among trials, inconsistent with the discrete step 343 

model (Figure 6—figure supplement 4B).  344 

 345 

Taken together, we did not find evidence for a discrete step dynamic on single trials; on the 346 

contrary, our observations concord with slow ramping dynamics on single trials. Regardless, our 347 

GLM movement-time decoding approaches in Figure 6 did not make any assumptions about 348 

underlying single-trial dynamics.  349 

 350 

Moment-to-moment DAN activity causally controls movement timing  351 

Because dopaminergic ramping signals robustly predicted first-lick timing and were apparently 352 

transmitted via dopamine release to downstream striatal neurons, ramping DAN activity may 353 

causally determine movement timing. However, because the animals could expect reward within 354 

a few hundred milliseconds of the first-lick, it is also possible that the dopaminergic ramps could 355 

instead serve as a “passive” monitor of reward expectation without influencing movement 356 

initiation. To distinguish these possibilities, we optogenetically activated or inhibited DANs (in 357 

separate experiments) on 30% of randomly-interleaved trials (Figure 7A and Figure 7—figure 358 

supplement 1). For activation experiments, we chose light levels that elevated DAN activity 359 

within the physiological range observed in our self-timed movement task, as assayed by 360 

simultaneous photometry in the DLS with a fluorescent sensor of released dopamine (dLight1.1, 361 

Figure 7—figure supplement 2). DAN activation significantly early-shifted the distribution of 362 

self-timed movements on stimulated trials compared to unstimulated trials (12 mice; 2-sample 363 

Kolmogorov-Smirnov (KS) Test, D=0.078 (95% CI: [0.067,0.093]), p=2.8·10-26), whereas 364 

inhibition produced significant late-shifting compared to unstimulated trials (4 mice; 2-sample 365 
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KS Test, D=0.051 (95% CI: [0.034,0.077]), p=3.1·10-4; Figure 7B and Figure 7—figure 366 

supplement 3A). Stimulation of mice expressing no opsin produced no consistent effect on 367 

timing (5 mice; 2-sample KS Test, D=0.017 (95% CI: [0.015,0.040]), p=0.62). The direction of 368 

these effects was consistent across all animals tested in each category (Figure 7B). 369 

Complementary analysis methods revealed consistent effects (bootstrapped difference in median 370 

first-lick times between categories: Δ(activation - no-opsin) = -0.22 s (95% CI=[-0.32 s,-0.12 371 

s]), Δ(inhibition – no-opsin) = +0.19 s (95% CI=[+0.09 s,+0.30 s]), Figure 7C-D; bootstrapped 372 

comparison of difference in area under the cdf curves: Δ(activation – no-opsin) = -0.31 dAUC 373 

(95% CI=[-0.47 dAUC,-0.15 dAUC]), Δ(inhibition – no-opsin) = +0.23 dAUC (95% 374 

CI=[+0.08 dAUC,+0.37 dAUC]), Figure 7—figure supplement 3B; bootstrapped difference in 375 

mean first-lick times between categories: Δ(activation – no-opsin) = -0.34 s (95% 376 

CI=[-0.49 s,-0.19 s]), Δ(inhibition – no-opsin) = +0.24 s (95% CI=[+0.09 s,+0.39 s]), Figure 7—377 

figure supplement 3C). Similar effects were obtained with activation of SNc DAN axon 378 

terminals in the DLS (2 mice, Figure 7—figure supplement 3A-B). Because these exogenous 379 

manipulations of DAN activity modulated movement timing on the same trial as the 380 

stimulation/inhibition, this suggests that the endogenous dopaminergic ramping we observed 381 

during the self-timed movement task likewise affected movement initiation in real time, rather 382 

than serving solely as a passive monitor of reward expectation.  383 

 384 

Recent studies have shown that physiological ranges of optogenetic DAN activation (as assayed 385 

by simultaneous recordings from DANs) fail to elicit overt movements (Coddington and 386 

Dudman, 2018). We likewise found that optogenetic DAN activation did not elicit immediate 387 

licking outside the context of the task (Figure 7—figure supplement 4A). Additionally, 388 
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optogenetic DAN inhibition did not reduce the rate of spontaneous licking outside the context of 389 

the task (Figure 7—figure supplement 4B). In both cases, we used the same light levels that had 390 

elicited the robust shifts in timing behavior during the self-timed movement task. In other control 391 

experiments, we purposefully drove neurons into non-physiological activity regimes during the 392 

task by applying higher activation light levels. Over-stimulation caused large, immediate, 393 

sustained increases in DLS dopamine (Figure 7—figure supplement 2), comparable in 394 

amplitude to the typical reward-related dopamine transients on interleaved, unstimulated trials. 395 

These non-physiological manipulations resulted in rapid, nonpurposive body movements and 396 

disrupted performance of the task. Together, these results suggest that the optogenetic effects on 397 

timing in Figure 7 did not result from direct, immediate triggering or suppression of movement, 398 

nor from non-physiological dopamine release due to over-stimulation. 399 

 400 

Linking endogenous DAN signals to the moment-to-moment probability of movement 401 

initiation 402 

Optogenetic manipulations of DAN activity in the physiological range appeared to modulate the 403 

probability of initiating the pre-potent, self-timed movement. Given that endogenous DAN 404 

signals increased during the timing interval of the self-timed movement task, we reasoned that 405 

the probability of movement should likewise increase over the course of the timed interval. We 406 

thus derived a nested probabilistic movement-state decoding model to explore the link between 407 

DAN signals and movement propensity (Figure 8A). We applied a GLM based on logistic 408 

regression, in which we classified each moment of time as either a non-movement (0) or 409 

movement (1) state (Figure 8A-B), and we examined how well various parameters could predict 410 

the probability of transitioning from the non-movement state to the movement state. Unlike the 411 
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decoding model in Figure 6, which considers a single threshold-crossing time, the probabilistic 412 

approach takes into account continuous DAN signals. Initial model selection included previous 413 

trial history (movement time and reward outcome history) in addition to the DAN GCaMP6f 414 

signal, but Bayesian Information Criterion (BIC) analysis indicated that the instantaneous 415 

GCaMP6f signal alone was a robustly significant predictor of movement state, whereas previous 416 

trial outcomes were insignificant contributors and did not further improve the model (Figure 8—417 

figure supplement 1). We thus only considered the DAN GCaMP6f signal as a predictor in 418 

subsequent analyses.  419 

 420 

The continuous DAN GCaMP6f signal was indeed predictive of current movement state at any 421 

time t, and it served as a significant predictor of movement state, up to at least 2 seconds in the 422 

past (Figure 8C). However, the signals became progressively more predictive of the current 423 

movement state as time approached t. That is, the dopaminergic signal levels closer to time t 424 

tended to absorb the behavioral variance explained by more distant, previous signal levels 425 

(Figure 8C), reminiscent of how threshold crossing time absorbed the variance explained by the 426 

baseline dopaminergic signal in the movement-timing decoding model (Figure 6B-C). This 427 

observation is consistent with a diffusion-like ramping process on single trials, in which the most 428 

recent measurement gives the best estimate of whether there will be a transition to the movement 429 

state (but is difficult to reconcile with a discrete step process on single trials, consistent with the 430 

results in Figure 6—figure supplements 3-4). 431 

 432 

We applied the fitted instantaneous probabilities of transitioning to the movement state to derive 433 

a fitted hazard function for each behavioral session (Figure 8D). The DAN GCaMP6f signals 434 
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were remarkably predictive of the hazard function, both for individual sessions and on average, 435 

explaining 65% of the variance on average (n=12 mice). Conversely, when the model was fit on 436 

the same data in which the timepoint identifiers were shuffled, this predictive power was 437 

essentially abolished, explaining only 5% of the variance on average (Figure 8E).  438 

 439 

Together, these results demonstrate that slowly evolving dopaminergic signals are predictive of 440 

the moment-to-moment probability of movement initiation. When combined with the 441 

optogenetics results, they argue that dopaminergic signals causally modulate the moment-to-442 

moment probability of the pre-potent movement. In this view, trial-by-trial variability in the 443 

DAN signal gives rise to trial-by-trial differences in movement timing in the self-timed 444 

movement task.  445 

 446 

DISCUSSION 447 

We made two main findings. First, both baseline and slowly ramping DAN signals were 448 

predictive of the timing of the first-lick. Second, optogenetic modulation of DANs affected the 449 

timing of movements on the concurrent trial, suggesting that DANs can play a “real time” role 450 

in behavior. These observations raise two (presumably separable) questions of interpretation: 1) 451 

what is the mechanistic origin of ramping DAN signals in the self-timed movement task, and 2) 452 

how do DAN signals affect self-timed movements in real time?   453 

 454 

The origin of ramping DAN signals  455 

A number of studies have reported short-latency (<500 ms) modulations in DAN activity 456 

following reward-predicting sensory cues and immediately preceding movements (Coddington 457 
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and Dudman, 2018; da Silva et al., 2018; Dodson et al., 2016; Howe and Dombeck, 2016; 458 

Schultz et al., 1997), similar to the sensory- and motor-related transients we observed within 459 

~500 ms of the cue and first-lick. However, the ramping DAN signals we observed during self-460 

timing were markedly slower, unfolding over seconds and preceding the first-lick by as long as 461 

10 s. Previous studies have reported similarly slow ramping dopaminergic signals in other 462 

behavioral contexts, including goal-directed navigation toward rewarded targets (Howe et al., 463 

2013); multi-step tasks leading to reward (Hamid et al., 2016; Howard et al., 2017; Mohebi et 464 

al., 2019); and passive observation of dynamic visual cues indicating proximity to reward (Kim 465 

et al., 2019). A common feature in these experiments and our self-timed movement task is that 466 

trials culminated in the animal’s receiving reward. Thus, parsimony suggests that dopaminergic 467 

ramping could reflect reward expectation. However, dopaminergic ramping is generally absent 468 

in Pavlovian paradigms, in which animals learn to expect passive reward delivery at a fixed time 469 

following a conditioned stimulus (Menegas et al., 2015; Tian et al., 2016; Schultz et al., 1997; 470 

Starkweather et al., 2017). (One exception is a report of ramping activity in monkey DANs 471 

during a Pavlovian paradigm with reward uncertainty (Fiorillo et al., 2003); however, ramping 472 

was not subsequently reproduced under similar conditions, either in monkeys (Fiorillo, 2011; 473 

Matsumoto and Hikosaka, 2009; Tobler et al., 2005) or rodents (Hart et al., 2015; Tian and 474 

Uchida, 2015). Thus, while dopaminergic ramping is likely related to reward expectation, the 475 

preponderance of evidence suggests that reward expectation alone is insufficient to cause DAN 476 

ramping.  477 

 478 

To reconcile these disparate findings, Gershman and colleagues proposed a formal model in 479 

which dopaminergic ramping encodes reward expectation in the form of an “ongoing” reward-480 
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prediction error (RPE) that arises from resolving uncertainty of one’s position in the value 481 

landscape (i.e., one’s spatial-temporal distance to reward delivery/omission). For example, 482 

uncertainty is resolved if animals are provided visuospatial cues indicating proximity to reward 483 

(Howe et al., 2013; Kim et al., 2019). In contrast, because animals can only imprecisely estimate 484 

the passage of time, the animal is uncertain of when reward will be delivered/omitted in 485 

Pavlovian tasks. The RPE model holds that this temporal uncertainty flattens the Pavlovian value 486 

landscape, thereby flattening dopaminergic ramping to the degree that it is obscured (Gershman, 487 

2014; Kim et al., 2019; Mikhael and Gershman, 2019; Mikhael et al., 2019). Though both our 488 

task and Pavlovian tasks involve timing, the key difference may be that the animal actively 489 

determines when reward will be delivered/omitted in the self-timed movement task—just after it 490 

moves. Certainty in the timing of reward relative to its own movement would resolve the 491 

animal’s uncertainty of its position in the value landscape, and may thus explain why 492 

dopaminergic ramping occurs prominently in the self-timed movement task, but not in Pavlovian 493 

tasks (Hamilos and Assad, 2020). Though the RPE model provides a plausible explanation for 494 

our findings, dopaminergic ramping signals are also consistent with broader views of “reward 495 

expectation,” such as tracking value as animals approach reward (Hamid et al., 2016; Mohebi et 496 

al., 2019). In a companion theoretical paper (Hamilos and Assad, 2020), we explore the reward-497 

expectation-based computational framework in more detail, including a reconciliation of 498 

apparently contradictory DAN signals reported in the context of a perceptual timing task (Soares 499 

et al., 2016).  500 

 501 
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How do DAN signals affect movement in real time? 502 

We found that trial-by-trial variability in ramping dynamics explained the precise timing of self-503 

timed licks. However, because the animals could expect reward shortly after the first-lick, the 504 

ramping dopaminergic signal might serve as a passive monitor of reward expectation rather than 505 

causally influencing the timing of movement initiation. To distinguish these possibilities, we 506 

optogenetically manipulated SNc DAN activity. We found that exciting or inhibiting DANs 507 

altered the timing of the first-lick on the concurrent trial, in a manner suggesting an 508 

increase/decrease in the probability of movement, respectively. This suggests that endogenous 509 

DAN signaling could play a causal role in the initiation of reward-related movements in real 510 

time—but by what mechanism?  511 

 512 

One possibility is that endogenous or exogenous DAN signals could increase the animal’s 513 

motivation or heighten its expectation of reward, which then secondarily influences reward-514 

related movement. There is some evidence that might support this view. Phillips et al. found that 515 

electrical stimulation of the VTA in rats elicited approach behavior for self-delivery of 516 

intravenous cocaine; however, the electrical stimulation could have activated non-DAN 517 

fibers/pathways via the VTA (Phillips et al., 2003). Hamid et al. found that selective optogenetic 518 

stimulation of DANs could shorten the latency for rats to engage in a port-choice task—but only 519 

if the rat was disengaged from the task; if the rat was already engaged in task performance, the 520 

latency became slightly longer (Hamid et al., 2016).  521 

 522 

In contrast to these equivocal findings, a large body of evidence suggests that selective 523 

optogenetic stimulation or inhibition of DANs generally does not affect reward-related 524 
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movements on the same trial. First, we ourselves could not evoke licking (nor inhibit 525 

spontaneous licking) outside the context of our self-timed movement task (Figure 7—figure 526 

supplement 4). Our mice were thirsty and perched near their usual juice tube, but offline DAN 527 

stimulation/inhibition did not alter licking behavior, even though we applied the same optical 528 

power that altered movement probability during the self-timed movement task. Numerous studies 529 

have also examined the effects of optogenetic modulation of DANs in Pavlovian conditioning 530 

paradigms, with the general finding that DAN modulation affects conditioned movements on 531 

subsequent trials or sessions—a learning effect—but not on the same trial (Coddington and 532 

Dudman, 2018, 2021; Lee et al., 2020; Maes et al., 2020; Morrens et al., 2020; Pan et al., 2021; 533 

Saunders et al., 2018). For example, Lee et al. found that optogenetic inhibition of mouse DANs 534 

at the same time as an olfactory conditioned stimulus had no effect on anticipatory licking on the 535 

concurrent trial, even though inhibition at the time of reward delivery reduced the probability 536 

and rate of anticipatory licking on subsequent trials (Lee et al., 2020). Thus, the preponderance 537 

of evidence argues against a simple scheme whereby modulating DAN activity leads to a change 538 

in motivation that automatically evokes or suppresses reward-related movements in real time. 539 

The fact that we observed robust, concurrent optogenetic modulation of movement timing in our 540 

experiment suggests that additional factors were at play for self-timed movements. 541 

 542 

One possibility is that during self-timing, exogenous (optogenetic) stimulation of DANs summed 543 

with the endogenous ramping DAN signal, leading to supra-heightened motivation to obtain 544 

reward. However, when we deliberately over-stimulated DANs—eliciting even higher dopamine 545 

signals in the DLS (Figure 7—figure supplement 2)—we observed “dyskinetic” body 546 

movements rather than purposive licking. An alternative possibility is that the explicit timing 547 
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requirement of the self-timed movement task made it particularly responsive to dopaminergic 548 

modulation. A long history of pharmacological and lesion experiments suggests that the 549 

dopaminergic system modulates timing behavior (Meck, 2006; Merchant et al., 2013). Broadly 550 

speaking, conditions that increase/decrease dopamine availability or efficacy speed/slow the 551 

“internal clock,” respectively (Dews and Morse, 1958; Mikhael and Gershman, 2019; Schuster 552 

and Zimmerman, 1961; Malapani et al., 1998; Meck, 1986, 2006; Merchant et al., 2013). The 553 

dopaminergic ramping signals we observed also bear resemblance to Pacemaker-Accumulator 554 

models of neural timing, in which a hypothetical accumulator signals that an interval has elapsed 555 

when it reaches a threshold level (Gallistel and Gibbon, 2000; Lustig and Meck, 2005; Meck, 556 

2006). To “self-time” a movement also implies that the movement is prepared and pre-potent 557 

during the timing period, potentially making the relevant neural motor circuits more sensitive to 558 

dopaminergic modulation.  559 

 560 

Regardless of the detailed mechanism, our results provide a link between dopaminergic signaling 561 

and the initiation of self-timed movements. Though endogenous dopaminergic ramping likely 562 

reflects reward expectation, we propose that these reward-related ramping signals can influence 563 

the timing of movement initiation, at least in certain behavioral contexts. This framework also 564 

provides a link between two seemingly disparate roles that have been proposed for the 565 

dopaminergic system—reward/reinforcement-learning on one hand, and movement modulation 566 

on the other.   567 

 568 

Importantly, we are not suggesting that DANs directly drive movement (like corticospinal or 569 

corticobulbar neurons). To the contrary, outside of the context of the self-timed movement task, 570 
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we could not evoke reward-related movements by activating DANs. Even during the self-timed 571 

movement task, DAN stimulation did not elicit immediate movements: first-lick times still 572 

spanned a broad distribution from trial-to-trial. Moreover, dopaminergic ramping does not 573 

invariably lead to movement. For example, Kim et al. found dopaminergic ramping in the 574 

presence of visual cues that signaled proximity to reward, independent of reward-related 575 

movements (Kim et al., 2019). Consequently, we propose that when a movement is pre-potent 576 

(as in our self-timed movement task), dopaminergic signaling can modulate the probability of 577 

initiating that movement. Consistent with this view, we found that the endogenous ramping 578 

dynamics were highly predictive of the moment-by-moment probability of movement (as 579 

captured by the hazard function), with DAN signals becoming progressively better predictors as 580 

the time of movement onset approached.  581 

 582 

This view of dopaminergic modulation of movement probability could be related to classic 583 

findings from extrapyramidal movement disorders, in which dysfunction of the nigrostriatal 584 

pathway produces aberrations in movement initiation rather than paralysis or paresis (Bloxham 585 

et al., 1984; Fahn, 2011; Hallett and Khoshbin, 1980). That is, movements do occur in 586 

extrapyramidal disorders, but at inappropriate times, either too little/late (e.g., Parkinson’s), or 587 

too often (e.g., dyskinesias). Based on the deficits observed in Parkinsonian states (e.g., 588 

perseveration), this role may extend to behavioral transitions more generally, e.g., starting new 589 

movements or stopping ongoing movements (Guru et al., 2020).  590 

 591 
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Is DAN ramping also present before “spontaneous” movements? 592 

We have suggested that the ramping DAN signals in the self-timed movement task could be 593 

related to reward expectation coupled with the explicit timing requirement of the task. However, 594 

when we averaged DAN signals aligned to “spontaneous” licks during the ITI, we also observed 595 

noisy, slow ramping signals building over seconds up to the time of the next lick, with a time 596 

course related to the duration of the inter-lick interval (Figure 8—figure supplement 2). This 597 

observation raises the possibility that slowly evolving DAN signals may be related to the 598 

generation of self-initiated movements more generally—although our highly trained animals may 599 

have also been “rehearsing” timed movements between trials, and/or expecting reward even for 600 

spontaneous licks.    601 

 602 

Relationship to setpoint and stretching dynamics in other neural circuits 603 

We found that DAN signals predict movement timing via two low-dimensional signals: a 604 

baseline offset and a ramping dynamic that “stretches” depending on trial-by-trial movement 605 

timing. Intriguingly, similar stretching of neural responses has been observed before self-timed 606 

movement in other brain areas in rats and primates, including the dorsal striatum (Emmons et al., 607 

2017; Mello et al., 2015; Wang et al., 2018), lateral interparietal cortex (Maimon and Assad, 608 

2006), presupplementary and supplementary motor areas (Mita et al., 2009), and dorsomedial 609 

frontal cortex (DMFC; Remington et al., 2018; Sohn et al., 2019; Wang et al., 2018; Xu et al., 610 

2014). In the case of DMFC, applying dimensionality reduction to the population responses 611 

revealed two lower-dimensional characteristics that resembled our findings in DANs: 1) the 612 

speed at which the population dynamics unfolded was scaled (“stretched”) to the length of the 613 

produced timing interval (Wang et al., 2018), and 2) the population state at the beginning of the 614 
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self-timed movement interval (“setpoint”) was correlated with the timed interval (Remington et 615 

al., 2018; Sohn et al., 2019). Recurrent neural network models suggested variation in stretching 616 

and setpoint states could be controlled by (unknown) tonic or monotonically-ramping inputs to 617 

the cortico-striatal system (Remington et al., 2018; Sohn et al., 2019; Wang et al., 2018). We 618 

found that DANs exhibit both baseline (e.g., “setpoint”) signals related to timing, as well as 619 

monotonically ramping input during the timing interval. Thus, through their role as diffusely-620 

projecting modulators, DANs could potentially orchestrate variations in cortico-striatal dynamics 621 

observed during timing behavior. Ramping DAN signals could also be related to the slow 622 

ramping signals that have been observed in the human motor system in anticipation of self-623 

initiated movements, e.g., readiness potentials in EEG recordings (Deecke, 1996; Libet et al., 624 

1983). 625 

 626 

Possible relationship to motivational/movement vigor 627 

In operant tasks in which difficulty is systematically varied over blocks of trials, increased inter-628 

trial dopamine in the nucleus accumbens has been associated with higher average reward rate 629 

and decreased latency to engage in a new trial, suggesting a link between dopamine and 630 

“motivational vigor,” the propensity to invest effort in work (Hamid et al., 2016; Mohebi et al., 631 

2019). Intriguingly, we observed the opposite relationship in the self-timed movement task: 632 

periods with higher average reward rates had lower average baseline dopaminergic signals and 633 

later first-lick times. Moreover, for a given first-lick time (e.g., 3.5-3.75 s), we did not detect 634 

differences in baseline (or ramping) signals during periods with different average reward rates, 635 

such as near the beginning or end of a session. This difference between the two tasks may be due 636 

to their opposing strategic constraints: in the aforementioned experiments, faster trial initiation 637 



 29

increased the number of opportunities to obtain reward, whereas earlier first-licks tended to 638 

decrease reward acquisition in our self-timed movement task. 639 

 640 

The basal ganglia have also been implicated in controlling “movement vigor,” generally 641 

referring to the speed, force or frequency of movements (Bartholomew et al., 2016; Dudman 642 

and Krakauer, 2016; Panigrahi et al., 2015; Turner and Desmurget, 2010; Yttri and Dudman, 643 

2016). The activity of nigrostriatal DANs has been shown to correlate with these parameters 644 

during movement bouts and could promote more vigorous movement via push-pull interactions 645 

with the direct and indirect pathways (Barter et al., 2015; da Silva et al., 2018; Mazzoni et al., 646 

2007; Panigrahi et al., 2015). Movement vigor might also entail earlier self-timed movements, 647 

mediated by moment-to-moment increases in dopaminergic activity.  648 

 649 

If moving earlier is a signature of greater movement vigor, then earlier self-timed movements 650 

might also be executed with greater force/speed. We looked for movement-related vigor signals, 651 

examining both the amplitude of lick-related EMG signals and the latency between lick initiation 652 

and lick-tube contact. We detected no consistent differences in these force- or speed-related 653 

parameters as a function of movement time; on the contrary, the EMG signals were highly 654 

stereotyped irrespective of the first-lick time (data not shown).  It is possible that vigor might 655 

affect movement timing without affecting movement kinematics/dynamics—but, if so, the 656 

distinction between “timing” and “vigor” would seem largely semantical.  657 

 658 
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Overall view 659 

We have posited that dopaminergic ramping reflects reward expectation, a common element of 660 

behavioral paradigms that reveal slow dopaminergic ramping. Furthermore, our optogenetic 661 

manipulations indicate that dopaminergic signals do not directly trigger movements, but rather 662 

act as if modulating the probability of the pre-potent self-timed movement. Taken together, these 663 

observations suggest that as DAN activity ramps up, the probability of movement likewise 664 

increases. In this view, different rates of increase in DAN activity lead to shorter or longer 665 

elapsed intervals before movement, on average. This framework leaves open the question of 666 

what makes movement timing “probabilistic.” One possibility is that recurrent cortical-basal 667 

ganglia–thalamic circuits could act to generate movements “on their own,” without direct 668 

external triggers (e.g., a “go!” cue). By providing crucial modulation of these circuits, DANs 669 

could tune the propensity to make self-timed movements—and pathological loss of DANs could 670 

reduce the production of such movements. Future experiments should address how dynamic 671 

dopaminergic input influences downstream motor circuits involved in self-timed movements.  672 

 673 

SOURCE DATA 674 

Source data files have been provided for all main figures and supplements: 675 

Figure 1—source data 676 
Figure 2—source data 1 677 
Figure 2—source data 2 678 
Figure 2—source data 3 679 
Figure 2—source data 4 680 
Figure 3—source data 681 
Figure 4—source data 682 
Figure 5—source data 683 
Figure 6—source data 684 
Figure 7—source data 685 
Figure 8—source data 686 
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FIGURES687 

 688 

Figure 1. Self-timed movement task. (A) Task schematic (3.3 s version shown). (B) First-lick 689 
timing distributions generated by the same mouse exhibit the scalar property of timing 690 
(Weber’s Law). Red: 3.3 s target time (4 sessions); Blue: 5 s target time (4 sessions). For all 691 
mice, see Figure 1—figure supplement 1B. (C-E) Hazard-function analysis. Time=0 is the 692 
start-timing cue; dashed vertical lines are target times. (C) Uniform instantaneous probability 693 
of movement over time is equivalent to a flat hazard rate (bottom) and produces an 694 
exponential first-lick timing distribution (top). (D) Before Training: First day of exposure to 695 
the self-timed movement task. Top: average first-lick timing distribution across mice; bottom: 696 
corresponding hazard functions. Gray traces: single session data. Red traces: average among 697 
all sessions, with shading indicating 95% confidence interval produced by 10,000x bootstrap 698 
procedure. (E) Trained Behavior: Hazard functions (bottom) computed from the first-lick 699 
timing distributions for the 3.3 s- and 5 s tasks (top) reveal peaks at the target times. Right: 700 
average first-lick timing distribution and hazard functions for all 12 GCaMP6f photometry 701 
animals. See also Figure 1—figure supplements 1-2. Source data: Figure 1—source data. 702 

 703 
 704 
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 705 
Figure 2. SNc DAN signals preceding self-timed movement. (A) Left: surgical strategy for 706 
GCaMP6f/tdTomato fiber photometry. Right: average SNc DAN GCaMP6f response for first-licks 707 
between 3-3.25 s (12 mice). Data aligned separately to both cue-onset (left) and first-lick (right), 708 
with the break in the time axis indicating the change in plot alignment. (B) Average SNc DAN 709 
GCaMP6f responses for different first-lick times (indicated by dashed vertical lines). (C) 710 
Comparison of average DAN GCaMP6f and tdTomato responses on expanded vertical scale. Traces 711 
plotted up to 150 ms before first-lick. See also Figure 2—figure supplements 1-3. Source data: 712 
Figure 2—source data 1. 713 
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 714 
 715 
Figure 3. Striatal dopamine release during the self-timed movement task. Photometry signals 716 
averaged together from DA2m signals (n=4 mice) and dLight1.1 signals (n=5 mice) recorded in 717 
DLS. Axis break and plot alignment as in Figure 2. Dashed lines: first-lick times. Inset, left: 718 
surgical strategy. Inset, right: Comparison of dLight1.1 and DA2m dynamics. Expanded vertical 719 
scale to show ramping in the average signals for DA2m (solid trace) and dLight1.1 (dashed trace) 720 
up until the time of the first-lick (first-lick occurred between 2-3 s after the cue for this subset of 721 
the data). See also: Figure 3—figure supplement 1. Source data: Figure 3—source data. 722 
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 723 

Figure 4. Movement controls reliably detected movements, but there were no systematic 724 
differences in movement during the timing interval. (A) Schematic of movement-control 725 
measurements. (B) First-lick-aligned average movement signals on rewarded (red) and 726 
unrewarded (blue) trials. Pre-lick traces begin at the nearest cue-time (dashed red, dashed 727 
blue). Left: one session; Right: all sessions. Dashed grey line: time of earliest-detected 728 
movement on most sessions (150 ms before first-lick). Average first-lick-aligned tdTomato 729 
optical artifacts showed inconsistent excursion directions (up/down) even within the same 730 
session; signals for each artifact direction shown in Figure 4—figure supplement 1. Source 731 
data: Figure 4—source data. 732 

 733 
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  734 

Figure 5. Contribution of optical artifacts, task variables and nuisance bodily movements to 735 
SNc GCaMP6f signals. (A) Nested encoding model comparing the contribution of timing-736 
independent predictors (TI) to the contribution of timing-dependent predictors (TD). (B) 737 
Predicted dF/F signal for one session plotted up to time of first-lick. Model error simulated 738 
300x (shading). (C) Nested encoding model for one session showing the actual recorded 739 
signal (1st panel), the timing-independent model (2nd panel), and the full, timing-dependent 740 
model with all predictors (3rd panel). Top: GCaMP6f; Bottom: tdTomato (tdt). Right: relative 741 
loss improvement by timing-dependent predictors (grey dots: single sessions, line: median, 742 
box: lower/upper quartiles, whiskers: 1.5x IQR). See also Figure 5—figure supplement 1. 743 
Source data: Figure 5—source data. 744 
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 745 
 746 

Figure 6. Single-trial DAN signals predict first-lick timing. (A) Schematic of nested decoding 747 
model. Categories for n-1th trial predictors: 2) reaction, 3) early, 4) reward, 5) ITI first-lick (see 748 
Methods). Bottom: single-trial cue-aligned SNc DAN GCaMP6f signals from one session (6 trials 749 
shown for clarity). Traces plotted up to first-lick. Right: threshold-crossing model. Low/Mid/High 750 
label indicates threshold amplitude. Dots: single trials. (B) Model weights. Error bars: 95% CI, *: 751 
p<0.05, 2-sided t-test. Numbers indicate nesting-order. (C) Variance explained by each model nest. 752 
Grey lines: single sessions; thick black line: average. For model selection, see Figure 6—figure 753 
supplement 1C. (D) Predicted vs. actual first-lick time, same session as 6A. See also Figure 6—754 
figure supplements 1-4. Source data: Figure 6—source data. 755 

 756 
 757 
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 758 
 759 

Figure 7. Optogenetic DAN manipulation systematically and bidirectionally shifts the timing 760 
of self-timed movements. (A) Strategy for optogenetic DAN activation or inhibition. Mice 761 
were stimulated from cue-onset until first-lick or 7 s. (B) Empirical continuous probability 762 
distribution functions (cdf) of first-lick times for stimulated (blue line) versus unstimulated 763 
(grey line) trials. Arrow and shading show direction of effect. P-values calculated by 764 
Kolmogorov-Smirnov test (for other metrics, see Figure 7—figure supplements 1-2). (C) 765 
Median 1,000,000x bootstrapped difference in first-lick time, stimulated-minus-unstimulated 766 
trials. Box: upper/lower quartile; line: median; whiskers: 1.5x IQR; dots: single mouse. (D) 767 
Comparison of median first-lick time difference across all sessions. Error bars: 95% 768 
confidence interval (*: p<0.05, 1,000,000 bootstrapped median difference in first-lick time 769 
between sessions of different stimulation categories). See also Figure 7—figure supplements 770 
1-4. Source data: Figure 7—source data. 771 
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 772 

 773 
Figure 8. Single-trial dynamic dopaminergic signals predict the moment-to-moment probability 774 
of movement initiation. (A) Probabilistic movement-state model schematic. (B) Single-trial DAN 775 
GCaMP6f signals at SNc from one session. First-lick time truncated 150 ms before movement 776 
detection to exclude peri-movement signals. Bottom: Movement states for the trials shown as a 777 
function of time. Diagram on the right schematizes the model predictors relative to an example 778 
time=t on a single trial. (C) Nested model fitted coefficients. (D) Decoded hazard functions from 779 
full model (with all 10 predictors). Thick line=mean. n=12 mice. (E) Hazard function fitting with 780 
shuffled datasets abolished the predictive power of the model (same 12 mice). See also Figure 781 
8—figure supplements 1-2. Source data: Figure 8—source data. 782 
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MATERIALS AND METHODS 783 

Key Resources Table 

Reagent 
type 
(species) or 
resource 

Designation Source or 
reference 

Identifiers Additional 
information 

strain, 
strain 
background 
(M. 
musculus) 

DAT-Cre The Jackson 
Laboratory, Bar 
Harbor, ME 

B6.SJL-Slc6a3tm

1.1(cre)Bkmm/J 
RRID:IMSR_JA
X:020080 

Cre expression 
in dopaminergic 
neurons 

strain, 
strain 
background 
(M. 
musculus) 

Wild-type The Jackson 
Laboratory, Bar 
Harbor, ME 

C57BL/6 
RRID:IMSR_JA
X:000664 

 

other tdTomato 
(“tdt”) 

UNC Vector 
Core, Chapel 
Hill, NC 

AAV1-CAG-
FLEX-tdT 

Virus, for 
control 
photometry 
expression 

other gCaMP6f  Penn Vector 
Core, 
Philadelphia, 
PA 

AAV1.Syn.Flex.
GCaMP6f.WPR
E.SV40  

Virus, for 
photometry 
expression 

other DA2m  Vigene, 
Rockville, MD 

AAV9-hSyn-
DA4.4(DA2m) 

Virus, for 
photometry 
expression 

other dLight1.1 Lin Tian Lab; 
Children’s 
Hospital Boston 
Viral Core, 
Boston, MA 

AAV9.hSyn.dLi
ght1.1.wPRE 

Virus, for 
photometry 
expression 

other turboRFP Penn Vector 
Core 

AAV1.CB7.CI.T
urboRFP.WPRE
.rBG 

Virus, for 
control 
photometry 
expression 
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other ChR2 UNC Vector 
Core, Chapel 
Hill, NC 

AAV5-EF1a-
DIO-
hChR2(H134R)-
EYFP-WPRE-
pA 

Virus, for opsin 
expression 

other ChrimsonR UNC Vector 
Core, Chapel 
Hill, NC 

AAV1-hSyn-
FLEX-
ChrimsonR-tdT 

Virus, for opsin 
expression 

other stGtACR2  Addgene/Janelia 
Viral Core, 
Ashburn, VA 

AAV2/8-hSyn1-
SIO-stGtACR2-
FusionRed 

Virus, for opsin 
expression 

software, 
algorithm 

Matlab Mathworks Matlab2018B For most 
analyses 

software, 
algorithm 

Julia 
Programmin
g Language 

The Julia 
Project 

Julia 1.5.3 For 
probabilistic 
models 

software, 
algorithm 

Gen.jl The Gen Team Gen.jl For 
probabilistic 
models 

 784 

Animals 785 

Adult male and female hemizygous DAT-cre mice (Backman et al., 786 

2006; B6.SJL-Slc6a3tm1.1(cre)Bkmm/J, RRID:IMSR_JAX:020080; The Jackson Laboratory, Bar 787 

Harbor, ME) or wild-type C57BL/6 mice were used in all experiments (> 2 months old at the 788 

time of surgery; median body weight  23.8g, range 17.3-31.9 g). Mice were housed in standard 789 

cages in a temperature and humidity-controlled colony facility on a reversed night/day cycle 790 

(12 h dark/12 h light), and behavioral sessions occurred during the dark cycle. Animals were 791 

housed with enrichment objects provided by the Harvard Center for Comparative Medicine 792 
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(IACUC-approved plastic toys/shelters, e.g., Bio-Huts, Mouse Tunnels, Nest Sheets, etc.) and 793 

were housed socially whenever possible (1-5 mice per cage). All experiments and protocols were 794 

approved by the Harvard Institutional Animal Care and Use Committee (IACUC protocol 795 

#05098, Animal Welfare Assurance Number #A3431-01) and were conducted in accordance 796 

with the National Institutes of Health Guide for the Care and Use of Laboratory Animals. 797 

 798 

Surgery 799 

Surgeries were conducted under aseptic conditions and every effort was taken to minimize 800 

suffering. Mice were anesthetized with isoflurane (0.5-2% at 0.8 L/min). Analgesia was provided 801 

by s.c. 5 mg/kg ketoprofen injection during surgery and once daily for 3 d postoperatively 802 

(Ketofen, Parsippany, NJ). Virus was injected (50 nL/min) and the pipet remained in place for 10 803 

min before removal. 200 µm, 0.53 NA blunt fiber optic cannulae (Doric Lenses, Quebec, Canada) 804 

or tapered fiber optic cannulae (200 µm, 0.60 NA, 2 mm tapered shank, OptogeniX, Lecce, Italy) 805 

were positioned at SNc, VTA or DLS and secured to the skull with dental cement (C&B 806 

Metabond, Parkell, Edgewood, NY). Neck EMG electrodes were constructed from two Teflon-807 

insulated 32G stainless steel pacemaker wires attached to a custom socket mounted in the dental 808 

cement. Sub-occipital neck muscles were exposed by blunt dissection and electrode tips 809 

embedded bilaterally.  810 

 811 

Stereotaxic coordinates (from bregma and brain surface) 812 

Viral Injection:  813 

SNc: 3.16 mm posterior, +/- 1.4 mm lateral, 4.2 mm ventral 814 

VTA: 3.1 mm posterior, +/-0.6 mm lateral, 4.2 mm ventral  815 
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DLS: 0 mm anterior, +/- 2.6 mm lateral, 2.5 mm ventral. 816 

Fiber Optic Tips: 817 

SNc/VTA: 4.0 mm ventral (photometry) or 3.9 mm ventral (optogenetics). 818 

DLS: 2.311 mm ventral (blunt fiber) or 4.0 mm ventral (tapered fiber) 819 

 820 

Virus 821 

Photometry: 822 

tdTomato (“tdt”): AAV1-CAG-FLEX-tdT (UNC Vector Core, Chapel Hill, NC), 100 nL 823 

used alone or in mixture with other fluorophores (below), working concentration 824 

5.3*1012 gc/mL 825 

gCaMP6f (at SNc or VTA): 100 nL AAV1.Syn.Flex.GCaMP6f.WPRE.SV40 826 

(2.5*1013 gc/mL, Penn Vector Core, Philadelphia, PA). Virus was mixed in a 1:3 ratio 827 

with tdt (200 nL total) 828 

DA2m (at DLS): 200-300 nL AAV9-hSyn-DA4.4(DA2m) (working concentration: 829 

ca. 3*1012 gc/mL, Vigene, Rockville, MD) + 100 nL tdt 830 

dLight1.1 (at DLS): 300 nL AAV9.hSyn.dLight1.1.wPRE bilaterally at DLS (ca. 831 

9.6*1012 gc/mL, Children’s Hospital Boston Viral Core, Boston, MA) + 100 nL 832 

AAV1.CB7.CI.TurboRFP.WPRE.rBG (ca. 1.01*1012 gc/mL, Penn Vector Core) 833 

Optogenetic stimulation/inhibition (all bilateral at SNc): 834 

ChR2: 1000 nL AAV5-EF1a-DIO-hChR2(H134R)-EYFP-WPRE-pA (3.2*1013 gc/mL, 835 

UNC Vector Core, Chapel Hill, NC)  836 
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ChrimsonR +/- dLight1.1: 700 nL AAV1-hSyn-FLEX-ChrimsonR-tdT (4.1*1012 gc/mL, 837 

UNC Vector Core, Chapel Hill, NC) +/- 400-550 nL AAV9-hSyn-dLight1.1 838 

bilaterally at DLS (ca. 1013 gc/mL, Lin Tian Lab, Los Angeles, CA) 839 

stGtACR2: 300 nL 1:10 AAV2/8-hSyn1-SIO-stGtACR2-FusionRed (working 840 

concentration 4.7*1011 gc/mL, Addgene/Janelia Viral Core, Ashburn, VA) 841 

 842 

Water-deprivation and acclimation 843 

Animals recovered for 1 week postoperatively before water deprivation. Mice received daily 844 

water supplementation to maintain ≥80% initial body weight and fed ad libitum. Mice were 845 

habituated to the experimenter and their health was monitored carefully following guidelines 846 

reported previously (Guo et al., 2014). Training commenced when mice reached the target 847 

weight (~8-9 d post-surgery). 848 

 849 

Histology 850 

Mice were anesthetized with >400 mg/kg pentobarbital (Somnasol, Henry Schein Inc, Melville, 851 

NY) and perfused with 10 mL 0.9% sodium chloride followed by 50mL ice-cold 4% 852 

paraformaldehyde in 0.1 M phosphate buffer. Brains were fixed in 4% paraformaldehyde at 4°C 853 

for >24 hr before being transferred to 30% sucrose in 0.1 M phosphate buffer for >48 hr. Brains 854 

were sliced in 50 µm coronal sections by freezing microtome, and fluorophore expression was 855 

assessed by light microscopy. The sites of viral injections and fiber optic placement were 856 

mapped with an Allen Mouse Brain Atlas. 857 

 858 
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Behavioral rig, data acquisition and analysis 859 

A custom rig provided sensory cues, recorded events and delivered juice rewards under the 860 

control of a Teensy 3.2 microprocessor running a custom Arduino state-system behavioral 861 

program with MATLAB serial interface. Digital and analog signals were acquired with a CED 862 

Power 1400 data acquisition system/Spike2 software (Cambridge Electronic Design Ltd, 863 

Cambridge, England). Photometry and behavioral events were acquired at 1,000 Hz; movement 864 

channels were acquired at 2,000 Hz. Video was acquired with FlyCap2 or Spinnaker at 30 fps 865 

(FLIR Systems, Wilsonville, OR). Data were analyzed with custom MATLAB statistics 866 

packages.  867 

 868 

Self-timed movement task 869 

Mice were head-fixed with a juice tube positioned in front of the tongue. The spout was placed 870 

as far away from the mouth as possible so that the tongue could still reach it to discourage 871 

compulsive licking (Guo et al., 2014), ~1.5 mm ventral and ~1.5 mm anterior to the mouth. 872 

During periods when rewards were not available, a houselamp was illuminated. At trial start, the 873 

houselamp turned off, and a random delay ensued (0.4-1.5 s) before a cue (simultaneous LED 874 

flash and 3300 Hz tone, 100 ms) indicated start of the timing interval. The timing interval was 875 

divided into two windows, early (0-3.333 s in most experiments; 0-4.95 s in others) and reward 876 

(3.333-7 s; 4.95-10 s), followed by the intertrial interval (ITI, 7-17 s; 10-20 s). The window in 877 

which the mouse first licked determined the trial outcome (early, reward, or no-lick). An early 878 

first-lick caused an error tone (440 Hz, 200 ms) and houselamp illumination, and the mouse had 879 

to wait until the full timing interval had elapsed before beginning the ITI. Thus there was no 880 

advantage to the mouse of licking early. A first-lick during the reward window caused a reward 881 
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tone (5050 Hz, 200 ms) and juice delivery, and the houselamp remained off until the end of the 882 

trial interval. If the timing interval elapsed with no lick, a time-out error tone played (131 Hz, 2 883 

s), the houselamp turned on, and ITI commenced. During the ITI and pre-cue delay (“lamp-off 884 

interval”), there was no penalty for licking.  885 

 886 

Mice learned the task in 3 stages (Figure 1—figure supplement 1A). On the first 1-4 days of 887 

training, mice learned a beginner-level task, which was modified in two ways: 1) to encourage 888 

participation, if mice did not lick before 5 s post-cue, they received a juice reward at 5 s; and 2) 889 

mice were not penalized for licking in reaction to the cue (within 500 ms). When the mouse 890 

began self-triggering ≥50% of rewards (day 2-6 of training), the mouse advanced to the 891 

intermediate-level task, in which the training reward at 5 s was omitted, and the mouse had to 892 

self-trigger all rewards. After completing >250 trials/day on the intermediate task (usually day 4-893 

7 of training), mice advanced to the mature task, with no reaction licks permitted. All animals 894 

learned the mature task and worked for ~400-1,500 trials/session. 895 

 896 

Hazard function correction of survival bias in the timing distribution 897 

The raw frequency of a particular response time in the self-timed movement task is “distorted” 898 

by how often the animal has the chance to respond at that time (Anger, 1956). This bias was 899 

corrected by calculating the hazard function, which takes into account the number of response 900 

opportunities the animal had at each timepoint. The hazard function is defined as the conditional 901 

probability of moving at a time, t, given that the movement has not yet occurred (referred to as 902 

“IRT/Op” analysis in the old Differential Reinforcement of Low Rates (DRL) literature). The 903 

hazard function was computed by dividing the number of first-movements in each 250 ms bin of 904 
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the first-lick timing histogram by the total number of first-movements occurring at that bin-time 905 

or later—the total remaining “opportunities.”  906 

 907 

Online movement monitoring 908 

Movements were recorded simultaneously during behavior with four movement-control 909 

measurements: neck EMG (band-pass filtered 50-2,000 Hz, 60 Hz notch, amplified 100-1,000x), 910 

back-mounted accelerometer (SparkFun Electronics, Boulder, CO), high-speed camera 911 

(30 Hz, FLIR Systems, Wilsonville, OR), and tdTomato photometry. All control signals 912 

contained similar information, and thus only a subset of controls was used in some sessions. 913 

 914 

Photometry 915 

Fiber optics were illuminated with 475 nm blue LED light (Plexon, Dallas, TX) 916 

(SNc/VTA: 50 μW, DLS: 35 μW) measured at patch cable tip with a light-power meter 917 

(Thorlabs, Newton, NJ). Green fluorescence was collected via a custom dichroic mirror (Doric 918 

Lenses, Quebec, Canada) and detected with a Newport 1401 Photodiode (Newport Corporation, 919 

Irvine, CA). Fluorescence was allowed to recover ≥1 d between recording sessions. To avoid 920 

crosstalk in animals with red control fluorophore expression, the red channel was recorded at one 921 

of the 3 sites (SNc, VTA, or DLS, 550 nm lime LED, Plexon, Dallas, TX) while GCaMP6f, 922 

dLight1.1 or DA2m was recorded simultaneously only at the other implanted sites. 923 

 924 
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dF/F 925 

Raw fluorescence for each session was pre-processed by removing rare singularities (single 926 

points >15 STD from the mean) by interpolation to obtain F(t). To correct photometry signals for 927 

bleaching, dF/F was calculated as: 928 

 929 

 930 

 931 

where F0(t) is the 200 s moving average of F(t) (Figure 2—figure supplement 2A). We tested 932 

several other complementary methods for calculating dF/F and all reported results were robust to 933 

dF/F method (see Methods: dF/F method characterization and validation). To ensure dF/F 934 

signal processing did not introduce artifactual scaling or baseline shifts, we also tested several 935 

complementary techniques to isolate undistorted F(t) signals where possible and quantified the 936 

amount of signal distortion when perfect isolation was not possible (see Methods: dF/F method 937 

characterization and validation, below, and Figure 2—figure supplement 2C).  938 

 939 

dF/F method characterization and validation 940 

dF/F calculations are intended to reduce the contribution of slow fluorescence bleaching to fiber 941 

photometry signals, and many such methods have been described (Kim et al., 2019; Mohebi et 942 

al., 2019; Soares et al., 2016). However, dF/F methods have the potential to introduce artifactual 943 

distortion when the wrong method is applied in the wrong setting. Thus, to derive an appropriate 944 

dF/F method for use in the context of the self-timed movement task, we characterized and 945 

quantified artifacts produced by 4 candidate dF/F techniques. 946 

 947 
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Detailed description of complementary dF/F methods.  948 

1. Normalized baseline: a commonly used dF/F technique in which each trial’s 949 

fluorescence is normalized to the mean fluorescence during the 5 s preceding the trial. 950 

2.   Low-pass digital filter: F0 is the low-pass, digital infinite impulse response 951 

(IIR)-filtered raw fluorescence for the whole session (implemented in MATLAB with 952 

the built-in function lowpass with fc=5·10-5 Hz, steepness=0.95). 953 

3.  Multiple baseline: a variation of Method 1, in which each trial’s fluorescence is 954 

normalized by the mean fluorescence during the 5 s preceding the current trial, as 955 

well as 5 trials before the current trial and 5 trials after the current trial.  956 

4.  Moving average: F0 is the 200 s moving average of the raw fluorescence at each point 957 

(100 s on either side of the measured timepoint).  958 

 959 

Although normalized baseline (Method 1) is commonly used to correct raw fluorescence signals 960 

(F) for bleaching, this technique assumes that baseline activity has no bearing on the trial 961 

outcome; however, because the mouse decides when to move in the self-timed movement task, it 962 

is possible that baseline activity may differ systematically with the mouse’s choice on a given 963 

trial. Thus, normalizing F to the baseline period would obscure potentially physiologically-964 

relevant signals. More insidiously, if baseline activity does vary systematically with the mouse’s 965 

timing, normalization can also introduce substantial amplitude scaling and y-axis shifting 966 

artifacts when correcting F with this method (Figure 2—figure supplement 2C, middle panels). 967 

Thus, Methods 2-4 were designed and optimized to isolate photometry signals minimally 968 

distorted by bleaching signals and systematic baseline differences during the self-timed 969 
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movement task. Methods 2-4 produced the same results in all statistical analyses, and the moving 970 

average method is shown in all figures. 971 

 972 

Isolating minimally-distorted photometry signals with paired trial analyses of raw fluorescence.  973 

Although slow bleaching prevents comparison of raw photometry signals (F) at one time in a 974 

behavioral session with those at another time, the time-course of appreciable bleaching was slow 975 

enough in the reported behavioral sessions that minimal bleaching occurred over the course of 976 

3 trials (~1 min, Figure 2—figure supplement 2A). Thus, to observe the most minimally-977 

distorted photometry signals possible, we compared F between pairs of consecutive trials 978 

(Figure 2—figure supplement 2B-C). We compared F baseline signals between all paired trials 979 

in which an early trial (unrewarded first-lick between 0.7-2.9 s; abbreviated as “E”) was 980 

followed by a rewarded trial (first-lick between 3.4-7 s; abbreviated as “R”); this two-trial 981 

sequence is thus referred to as an “ER” comparison. To ensure systematic differences did not 982 

result from subtle bleaching in the paired-trial interval, we reversed the ordering contingency and 983 

also compared all Rewarded trials preceding Early trials (“RE” comparison). The same 984 

systematic relationship between baseline signals and first-lick time was found for paired trials 985 

analyzed by raw F (Figure 2—figure supplement 2C, left panels). 986 

 987 

Quantification of artifactual amplitude scaling/baseline shifts introduced by dF/F processing. 988 

Each Candidate dF/F Method was applied to the same Paired Trial datasets described above. The 989 

resulting paired-fluorescence datasets were normalized after processing (minimum dF/F=0, 990 

maximum=1). The amount of distortion introduced by dF/F was quantified with a Distortion 991 

Index (DI), which was calculated as: 992 
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    Distortion Index, DI(t) = abs(F(t)-dF/F(t)) 993 

where F(t) and dF/F(t) are the normalized, paired-trial raw fluorescence signal or dF/F signal at 994 

time t, respectively. t spanned from the beginning of the n-1th trial (-20 s) to the end of the nth 995 

trial (20 s), aligned to the cue of the nth trial (Figure 2—figure supplement 2C, bottom panels). 996 

The DI shown in plots has been smoothed with a 200 ms moving average kernel for clarity. 997 

 998 

As expected, normalizing fluorescence to the baseline period (normalized baseline) erased the 999 

correlation of baseline dF/F signals with first-lick time (Figure 2—figure supplement 2C, 1000 

middle panels). More insidiously, this also resulted in distortion of GCaMP6f dynamics during 1001 

the timing interval, evident in the diminished difference between E-signals compared to R-1002 

signals relative to the shapes observed in the raw fluorescence paired-trial comparison (Figure 1003 

2—figure supplement 2C, middle-bottom panel). However, dF/F Methods 2-4 visually and 1004 

quantitatively recapitulated the dynamics observed in the raw fluorescence comparison (Figure 1005 

2—figure supplement 2C, right panels).  1006 

 1007 

These results were corroborated by time-in-session permutation tests in which datasets for single 1008 

sessions were divided into thirds (beginning of session, middle of session, and end of session). 1009 

The differences between baseline and ramping dynamics observed in whole-session averages 1010 

were present even within these shorter blocks of time within the session (i.e., faster ramping and 1011 

elevated baseline signals on trials with earlier self-timed licks). Furthermore, permutation tests in 1012 

which the block identity (begin, middle, end) was shuffled showed that this pattern held when 1013 

trials with earlier first-licks from the end of the session were compared with trials with later first-1014 

licks from the beginning of the session (and vice versa). 1015 
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 1016 

Normalized dF/F for comparing dopamine sensor signals 1017 

DA2m was about twice as bright as dLight1.1, and thus generally yielded larger and less noisy 1018 

dF/F signals. To compare the two extracellular dopamine sensors in the same plot, dF/F was 1019 

normalized for each signal by the amplitude of its lick-related transient. dF/F was calculated as 1020 

usual, and then the mean baseline-to-transient peak amplitude was measured for trials with first-1021 

licks occurring between 2-3 s. Percentage NdF/F is reported as the percentage of this amplitude.  1022 

 1023 

Dopamine sensor kinetics 1024 

dLight1.1 is an extracellular dopamine sensor derived from the dopamine-1-receptor, and has 1025 

fast reported kinetics: rise t1/2 = 9.5 ± 1.1 ms, decay t1/2 = 90 ± 11 ms (Patriarchi et al., 2018). 1026 

DA2m is a new extracellular dopamine indicator derived from the dopamine-2-receptor, which 1027 

provides brighter signals. DA2m signals have been reported to decay slowly in slice preparations 1028 

but are much faster in vivo, presumably because endogenous dopamine-clearance mechanisms 1029 

are preserved: reported rise t1/2 ~50 ms, decay t1/2  ~360 ms in freely behaving mice; decay t1/2  1030 

~190 ms in head-fixed drosophila (Sun et al., 2020). To estimate the dopamine-sensor kinetics 1031 

in our head-fixed mice, we examined the phasic fluorescence transient occurring on unrewarded 1032 

first-licks (0.5-3.3 s), which showed a stereotyped fast rise and decay with both sensors (Figure 1033 

2—figure supplement 3D-E). While the transient was somewhat complex (reminiscent of phasic 1034 

burst-pause responses sometimes observed for movement-related DAN activity (Coddington and 1035 

Dudman, 2018, 2019), we measured the time for average fluorescence to decay from the peak of 1036 

the transient to half the baseline-to-peak amplitude. We found decay t1/2~75 ms for dLight1.1 and 1037 

t1/2~125 ms for DA2m (Figure 3—figure supplement 1). Given that the dopaminergic ramping 1038 
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signals in our study evolved over several seconds, the kinetics of both dopamine sensors are thus 1039 

fast enough that they should not have caused appreciable distortion of the slow ramping 1040 

dynamics.  1041 

 1042 

Pearson’s correlation of baseline/lamp-off to cue interval signals to first-lick time. 1043 

The mean SNc GCaMP6f signal during the “baseline” (2 s interval before the lamp-off event) or 1044 

minimum lamp-off interval (“LOI;” -0.4 s to 0 s, the cue-time) was compared to the first-lick 1045 

time for pooled trials in Figure 2C by calculating the Pearson correlation coefficient. There were 1046 

at least 700 trials in each pooled set of trials (0.75-4 s included).  1047 

 1048 

DAN signal encoding model 1049 

To test the independent contribution of each task-related input to the photometry signal and 1050 

select the best model, we employed a nested fitting approach, in which each dataset was fit 1051 

multiple times (in “nests”), with models becoming progressively more complex in subsequent 1052 

nests. The nests fit to the GCaMP6f photometry data employed the inputs X(j) at each jth nest: 1053 

Null Model: X(0) = x0 1054 

Nest 1:  X(1) = X(0) + tdTomato (tdt) 1055 

Nest 2:  X(2) = X(1) + cue + first-lick 1056 

Nest 3:  X(3) = X(2) + EMG/accelerometer 1057 

Nest 4:  X(4) = X(3) + time-dependent baseline offset 1058 

Nest 5:  X(5) = X(4) + stretch representing percentages of interval 1059 

Overfitting was penalized by ridge regression, and the optimal regularization parameter for each 1060 

nest was obtained by 5-fold cross-validation to derive the final model fit for each session. Model 1061 
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improvement by each input was assessed by the percentage loss improvement at the nest where 1062 

the input first appeared compared to the prior nest. The loss improvement of Nest 1 was 1063 

compared to the Null Model (the average of the photometry timeseries). The nested model of tdt 1064 

control photometry signals was the same, except Nest 1 was omitted.  1065 

 1066 

The GLM for each nest takes the form: 1067 

Y = ϴX(j) 1068 

Where Y is the 1xn vector of the photometry signal across an entire behavioral session (n is the 1069 

total number of sampled timepoints); X(j) is the dxn design matrix for nest j, where the rows 1070 

correspond to the dj predictors for nest j and the columns correspond to each of the n sampled 1071 

timepoints of Y; and ϴ is the dx1 vector of fit weights.  1072 

 1073 

Y is the concatenated photometry timeseries taken from trial start (lights off) to the time of first 1074 

lick. Because of day-to-day/mouse-to-mouse variation (ascribable to many possible sources, e.g., 1075 

different neural subpopulations, expression levels, behavioral states, etc.), each session was fit 1076 

separately. 1077 

 1078 

The dj design matrix predictors were each scaled (maximum amplitude 1) and grouped by input 1079 

to the model. The timing-independent inputs were: 1. Null offset (x0, 1 predictor), 2. tdt (1 1080 

predictor), 3. cue (24 predictors), 4. first-lick (28 predictors), and 5. EMG/accelerometer (44 1081 

predictors). The timing-dependent inputs were: 6. timing-dependent baseline offset (1 predictor), 1082 

7. stretch (500 predictors).  1083 

 1084 
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To reduce the number of predictors, the cue, first-lick and EMG/accelerometer predictors 1085 

(Figure 5—figure supplement 1C) were composed from sets of basis kernels as described 1086 

previously (Park et al., 2014; Runyan et al., 2017). The cue basis kernels were spaced 0-500 ms 1087 

post-cue and first-lick basis kernels were spaced -500 ms-0 ms relative to first-lick, the typically-1088 

observed windows of stereotypical sensory and motor-related neural responses. For nuisance 1089 

movements (EMG/accelerometer), events were first discretized by thresholding (Figure 5—1090 

figure supplement 1B) and then convolved with basis kernels spanning -500 to 500 ms around 1091 

the event. This window was consistent with the mean movement-aligned optical artifact 1092 

observed in the tdt channel. The timing-dependent baseline offset was encoded as a constant 1093 

offset spanning from lamp-off until first-lick, with amplitude taken as linearly proportional to the 1094 

timed interval on the current trial. The timing-dependent stretch input was composed of 500 1095 

predictors, with each predictor containing 1’s tiling 0.05% of the cue-to-lick interval, and 0’s 1096 

otherwise (Figure 5—figure supplement 1D). Importantly, the stretch was not constrained in 1097 

any way to form ramps. 1098 

 1099 

Basis sets were optimized to minimize Training Loss, as calculated by mean squared error of the 1100 

unregularized model: 1101 

argminX
(j)(Training Loss(ϴ) = 1/n * (Y – ϴX(j))2) 1102 

 1103 

Superfluous basis set elements that did not improve Training Loss compared to the Null Model 1104 

were not included in the final model. Goodness of the training fit was assessed by Akaike 1105 

Information Criterion (AIC), Bayesian Information Criterion (BIC), R2, and Training Loss. The 1106 
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optimal, regularized model for each nest/session was selected by 5-fold cross-validation in which 1107 

the regularization parameter, λj, was optimized for minimal average Test Loss: 1108 

   argminλj (Test Loss(ϴ,λj) = 1/n * (Y – ϴX(j))2  + λj|ϴ|2) 1109 

 1110 

Test Loss for each optimal model was compared across nests to select the best model for each 1111 

session. Models were refit with the optimal λj to obtain the final fit. 1112 

 1113 

Model error was simulated 1,000 times by redrawing ϴ coefficients consistent with the data 1114 

following the method described by Gelman and Hill, 2006, and standard errors were propagated 1115 

across sessions. The absolute value of each predictor was summed and divided by the total 1116 

number of predictors for that input to show the contribution of the input to the model (Figure 1117 

5—figure supplement 1G). To simulate the modeled session’s photometry signal for each nest j, 1118 

Yfit was calculated as ϴX(j) and binned by the time of first-lick relative to the cue. The error in 1119 

the simulation was shown by calculating Yfitsim = ϴsimX(j) for 300 simulated sets of ϴsim. 1120 

 1121 

Principal component analysis (PCA) 1122 

Unsmoothed ramping intervals for photometry timeseries were fit with PCA and reconstructed 1123 

with the first three principal components (PCs). To derive a PCA fit matrix with ramping 1124 

intervals of the same number of samples, the length of each trial was scaled up by interpolation 1125 

to the maximum ramping interval duration: 1126 

7 s – 0.7 s cue buffer – 0.6 s first-lick buffer = 5.7 s: 5,700 sample ramping interval 1127 
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Following PC-fitting, datasets were down-sampled to produce a fit of the correct time duration. 1128 

Trials where the ramping interval was <0.1 s were excluded to exclude noise from down-1129 

sampling.   1130 

 1131 

First-lick time decoding model 1132 

A nested, generalized linear model was derived to predict the first-lick time on each trial in a 1133 

session and quantify the contribution of previous reward history and photometry signals to the 1134 

prediction. The model was of the form: 1135 

log(y) = bx 1136 

where y is the first-lick time, b is a vector of fit coefficients and x is a vector of predictors. The 1137 

nested model was constructed such that predictors occurring further back in time (such as reward 1138 

history) and confounding variables (such as tdt photometry signals) were added first to determine 1139 

the additional variance explained by predictors occurring closer to the time of first-lick, which 1140 

might otherwise obscure the impact of these other variables. The predictors, in order of nesting, 1141 

were: 1142 

Nest 0:  b0 (Null model, average log-first-lick time) 1143 

Nest 1:  b1 = b0 + first-lick time on previous trial (trial “n-1”) 1144 

Nest 2-5: b2 = b1 + previous trial outcome (1,0)* 1145 

Nest 6:  b3 = b2 + median photometry signal in 10s window before lamp-off (“ITI”) 1146 

Nest 7:  b4 = b3 + median photometry signal from lamp-off to cue (“lamp-off interval”) 1147 

Nest 8:  b5 = b4 + tdt threshold crossing time** 1148 

Nest 9:  b6 = b5 + GCaMP6f threshold crossing time** 1149 

 1150 
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where all predictors were normalized to be in the interval (0,1). 1151 

 1152 

* Outcomes included (in order of nest): Reaction (first-lick before 0.5 s), Early (0.5-3.333 s), 1153 

Reward (3.333-7 s), ITI (7-17 s). No-lick was implied by all four outcomes encoded as zeros.  1154 

** Details on threshold-crossing time and alternative models included in Methods: Derivation of 1155 

threshold and alternative decoding models. 1156 

 1157 

To exclude the sensory- and motor-related transients locked to the cue and the first-lick events in 1158 

the threshold-crossing nests, the ramping interval was conservatively defined as 0.7 s post-cue up 1159 

until 0.6 s before first-lick, and the minimum ramping interval for fitting was 0.1 s. Thus, for a 1160 

trial to be included in the model, the first lick occurred between 1.4 s to 17 s (end of trial).   1161 

 1162 

Initial model goodness of fit was assessed by R2, mean-squared loss and BIC. Models were 5-1163 

fold cross-validated with ridge regression at each nest to derive the final models, as described 1164 

above. 95% confidence intervals on model coefficients were calculated by 2-sided t-test with 1165 

standard errors propagated across sessions. 1166 

 1167 

Derivation of threshold and alternative decoding models 1168 

Derivation of threshold models 1169 

As a metric of the predictive power of ramping DAN signals on first-lick time, we derived a 1170 

threshold-crossing model. A threshold-crossing event was defined as the first time after the cue 1171 

when the photometry signal exceeded and remained above a threshold level up until the time of 1172 

first-lick on each trial. Importantly, while the analysis approach is reminiscent of pacemaker-1173 
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accumulator models for timing, we make no claims that the analysis is evidence for pacemaker-1174 

accumulator models. Rather threshold-crossing times provided a convenient metric to compare 1175 

the rate of increase in signals between trials.  1176 

 1177 

Photometry timeseries for GCaMP6f and tdt were de-noised by smoothing with a 100 ms 1178 

Gaussian kernel (kernel was optimized by grid screen of kernels ranging between 0-200 ms to 1179 

minimize noise without signal distortion). To completely exclude the sensory- and motor-related 1180 

transients locked to the cue and the first-lick events, the ramping interval was conservatively 1181 

defined as 0.7 s post-cue up until 0.6 s before the first-lick. To eliminate chance crossings due to 1182 

noise, we imposed a stiff, debounced threshold condition: to be considered a threshold crossing 1183 

event, the photometry signal had to cross the threshold from low-to-high and remain above this 1184 

level until the end of the ramping interval.  1185 

 1186 

To derive an unbiased threshold for each session, we tested 100 evenly-spaced candidate 1187 

threshold levels spanning the minimum-to-maximum photometry signal during the ramping 1188 

interval for each session. Depending on threshold level, some trials never crossed, i.e., signal 1189 

always remained below threshold or started and ended above threshold. Thus, the lowest 1190 

candidate threshold for which there was a maximum number of trials crossing during the timing 1191 

interval was selected as the “mid-level” threshold-crossing point. This threshold was specific to 1192 

each photometry signal tested on each session. Threshold-crossing time was included in the 1193 

decoding model as the normalized time on the ramping interval (0,1). If a trial never crossed 1194 

threshold, it was encoded as a zero. If no trials ever crossed threshold, the threshold predictor 1195 
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was encoded as a vector of ones, thus penalizing the model for an additional predictor but 1196 

providing no new information. 1197 

 1198 

Multi-threshold Model  1199 

An alternative model employed 3 unbiased thresholds: 1) the lowest threshold with ≥50 trials 1200 

crossing (“min”); 2) the lowest threshold with the most crossings (“mid,” described above); and 1201 

3) the highest threshold with ≥50 trials crossing (“max”). For tdt datasets, trials rarely met the 1202 

monotonic threshold constraint (usually the signals oscillated above and below the threshold 1203 

throughout the ramping interval, failing to meet the debouncing constraint). Thus, to include tdt 1204 

signals as conservatively as possible, we relaxed the 50-trial minimum constraint, taking the 1205 

threshold with the most trials crossing, which was usually around 10 or fewer. The addition of 1206 

more thresholds did not substantially improve the cross-validated model compared to the single-1207 

threshold model (Figure 6—figure supplement 1). 1208 

 1209 

Principal component analysis (PCA) threshold-crossing models 1210 

In another version of the decoding model, the threshold-crossing procedures were applied to 1211 

ramping intervals fit with the first three PCs (as described in Methods: Principal Component 1212 

Analysis (PCA)) to derive a PCA version of the single-threshold and multi-threshold models. 1213 

PCA analysis on tdt datasets showed no consistent PCs, and thus these PCs were not included in 1214 

the decoding model. Instead, the actual tdt data was employed in the threshold model as in the 1215 

other models described. 1216 

 1217 

Hierarchical Bayesian Modeling of Single-trial Dynamics. 1218 
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The probability of each single-trial SNc GCaMP6f signal belonging to a ramp vs. step Model 1219 

Class was determined via Hierarchical Bayesian Model fitting with probabilistic programs 1220 

written in the novel probabilistic programming language, Gen.jl, which is embedded in the Julia 1221 

Programming Language (Cusumano-Towner et al., 2019). The top of the model hierarchy was 1222 

the model class (linear ramp vs. step function) and the lower level was the respective 1223 

parameterization of the two model classes (described below). 1224 

 1225 

The probability of the step vs. ramp model class was inferred with data-driven inference.  The 1226 

best fit (step or ramp and parameterization) for each trial was calculated across 20 iterations 1227 

(Gen Traces) of hierarchical modeling with 50 rounds of probabilistic refinement (computation 1228 

via Gen Importance Resampling) per iteration (in model testing, models typically converged to 1229 

their steady-state probability of model class within only 30 rounds of refinement, but 50 rounds 1230 

were used conservatively to reduce the likelihood of suboptimal classifications). 1231 

 1232 

Data-driven inference procedure: Each iteration of model fitting began at the top level of the 1233 

hierarchy with a coin toss: with 50% probability, the probabilistic program would initialize with 1234 

a model of either the Ramp or Step class. For data-driven inference, a Gen Proposal for the 1235 

parameterization for this model class was then probabilistically generated. Data-driven proposals 1236 

were designed to improve fitting efficiency and reduce computation time, and this allowed for 1237 

faster convergence and better model fits as determined by the fit log-likelihood. The proposal 1238 

heuristics were as follows: 1239 

 Ramp model: A data-driven proposal was generated by dynamic noise random sample 1240 

consensus (RANSAC; Cusumano-Towner and Mansinghka, 2018) with additional data-driven 1241 
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constraints (see function ransac_assisted_model_selection_proposal in the Gen Github 1242 

files):  1243 

1. SLOPE, a.  The maximum data-supported slope was used to set the variance of slope 1244 

sampling: 1245 

a ~ Gaussian(RANSAC-sampled slope, maxslope/2). 1246 

where maxslope was defined as the difference of the maximum and minimum signal within 1247 

the trial dataset divided by the total duration of the trial (by definition, the largest slope 1248 

supported by the data).  1249 

2. INTERCEPT, b. The initial search for the intercept (“b-max”) was calculated as the 1250 

intercept for the calculated maxslope parameter), and this was used to set the noise level 1251 

on sampling of the intercept parameter:  1252 

b ~ Gaussian(RANSAC-sampled intercept, b-max /2) 1253 

3. NOISE, σ. Parametrized noise level was sampled as: 1254 

σ ~ Beta(ɑ,β) 1255 

where ɑ,β are the parameters of the beta distribution with mode=std(signal). 1256 

  1257 

Step model: The data-driven proposal included two constraints/heuristics: 1258 

1. STEPTIME. Derivative constraint: To avoid sampling all unlikely step-times, steptimes 1259 

were sampled uniformly from the timepoints where the derivative of the signal was in 1260 

the highest 5% of the signal’s derivative across the trial dataset: 1261 

steptime ~ uniform(indices of 95th percentile of derivative of the signal) 1262 
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2. LEFT and RIGHT SEGMENTS. Once a steptime was sampled, likely left and right 1263 

segment amplitudes were sampled near the mean of the signal on either side of the step, 1264 

e.g.: 1265 

left ~ Gaussian(mean(signal left of steptime), std(signal left of steptime)) 1266 

right ~ Gaussian(mean(signal right of steptime), std(signal right of steptime)) 1267 

3. NOISE, σ. The noise level was sampled as in the ramp model, 1268 

σ ~ Beta(ɑ,β) 1269 

except ɑ,β were the parameterization of a Beta distribution with mode equal to the 1270 

standard deviation of the signal left of steptime. 1271 

 1272 

After model initialization for each Trace, 50 rounds of Importance Resampling of the 1273 

hierarchical model were then conducted, each time randomly generating ramp or step hypotheses 1274 

from the proposal heuristics. On each round, the best fitting hypothesis was retained, such that 1275 

each of the 20 Trace iterations of model classification returned one optimized model from the 50 1276 

rounds of Importance Resampling.  1277 

 1278 

The probability of the model class for each single-trial was then defined as the proportion of the 1279 

20 Trace iterations that found the optimal model to be derived from that model class (e.g., if the 1280 

model returned 15 step-fits and 5 ramp-fits, the p(ramp) was 0.25). Examples of the 20 Trace 1281 

iterations for two sample trials are shown in Figure 6—figure supplement 2B. 1282 

 1283 
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To determine whether the step model detected step-functions in the GCaMP6f dataset, the step 1284 

model was inferred alone to find step-fits for every trial, and single-trial signals were realigned to 1285 

the optimal steptime (GCaMP6f, tdTomato, EMG, Figure 6—figure supplement 4A-B). 1286 

 1287 

Single-trial dynamics analysis with geometric modeling (“Multiple threshold modeling”).  1288 

The multi-threshold procedure described above was also employed to determine whether single-1289 

trial ramping dynamics were more consistent with a continuous ramp vs. discrete step dynamic 1290 

on single-trials. The threshold-crossing time for each trial was regressed against its first-lick time, 1291 

and the slope of this relationship was reported, as well as the variance explained.  1292 

 1293 

Single-trial variance analysis for discrete step dynamics.  1294 

For discrete step single trial dynamics to produce ramping on average, the time of the step across 1295 

trials must be distributed throughout the trial interval (importantly, a peri-motor spike occurring 1296 

consistently just before first-lick cannot give rise to continuous ramping dynamics on average). 1297 

As such, the variance in the GCaMP6f signals across trials for similar first-lick times should be 1298 

minimal near the time of the cue (when few trials have stepped) and near the time of the first-lick 1299 

(when all of the trials have stepped). This predicts an inverted-U shaped relationship of signal 1300 

variance across trials vs. position in the timing interval. 1301 

 1302 

To compare variance across trials equitably, trials were first aligned to the cue and pooled by 1303 

first-lick time in pools of 1s each (1-2 s, 2-3 s, etc.) truncating at the earliest first-lick time within 1304 

the pool. The variance in GCaMP6f signals across trials within a pool was quantified in 10% 1305 

percent increments of time from the cue up to the earliest first-lick time in the pool (i.e, 1-2 s 1306 
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pool truncated at 1 s, divided into 100 ms increments). Measuring variance by percent of elapsed 1307 

time within pool allowed pooling of trials across the entire session. The shape of the variance vs. 1308 

percent of timed interval elapsed was compared to the inverted-U shape prediction to assess for 1309 

discrete step dynamics. 1310 

 1311 

Optogenetics—determining the physiological range for activation experiments 1312 

To test whether optogenetic manipulations during the self-timing task were in the physiological 1313 

range, we assessed the magnitude of the effect of activation on dopamine release in the DLS by 1314 

simultaneous photometry recordings with optical activation (Figure 7—figure supplement 2). In 1315 

two DAT-cre mice, we expressed ChrimsonR bilaterally in SNc DANs and the fluorescent 1316 

dopamine indicator dLight1.1 bilaterally in DLS neurons. SNc cell bodies were illuminated 1317 

bilaterally (ChrimsonR 550 nm lime or 660 nm crimson, 0.5-5 mW) on 30% of trials (10 Hz, 10 1318 

or 20 ms up-time starting at cue onset and terminating at first-lick). dLight1.1 was recorded with 1319 

35 µW 475 nm blue LED light at DLS. To avoid crosstalk between the stimulation LED and the 1320 

photometry recording site, the brief stimulation up-times were omitted from the photometry 1321 

signal and the missing points filled by interpolation between the adjacent timepoints. 1322 

 1323 

In a few preliminary sessions, we also explored whether we could evoke short-latency licking 1324 

(i.e., within a few hundred ms of the stimulation) if light levels were increased above the 1325 

physiological range for DAN signals. Rather than eliciting immediate licking, higher light levels 1326 

produced bouts of rapid, nonpurposive limb and trunk movements throughout stimulation, and 1327 

task execution was disrupted. The animals appeared to have difficulty coordinating the extension 1328 

of the tongue to touch the lick spout. Simultaneous DLS dopamine detection showed large, 1329 
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sustained surges in dopamine release throughout the period of stimulation, with an average 1330 

amplitude comparable to that of the reward transient (Figure 7—figure supplement 2, right). 1331 

This extent of dopamine release was never observed during unstimulated trials. Consequently, to 1332 

avoid overstimulation in activation experiments, we kept light levels well below those that 1333 

generated limb and trunk movements.  1334 

 1335 

Optogenetics—naïve/expert control sessions.  1336 

To determine whether optogenetic stimulation directly elicited or prevented licking, licking 1337 

behavior was first tested outside the context of the self-timed movement task on separate 1338 

sessions in the same head-fixed arena but with no cues or behavioral task. Opsin-expressing mice 1339 

were tested before any exposure to the self-timed movement task (“Naïve”) as well as after the 1340 

last day of behavioral recording (“Expert”). In ChR2 control sessions, stimulation (5 mW 425 1341 

nm light, 3 s duration, 10 Hz, 20% duty cycle) was applied randomly at the same pace as in the 1342 

self-timed movement task. stGtACR2 control sessions were conducted similarly (12 mW 425 1343 

mW light, 3 s duration, constant illumination); but to examine if inhibition could block ongoing 1344 

licking, we increased the baseline lick-rate by delivering juice rewards randomly (5% probability 1345 

checked once every 5 s).  1346 

 1347 

Optogenetics—self-timed movement task.  1348 

SNc DANs were optogenetically manipulated in the context of the 3.3 s self-timed movement 1349 

task. To avoid overstimulation, light levels were adjusted to be subthreshold for eliciting overt 1350 

movements as described above, and mice were not stimulated on consecutive days.  1351 

 1352 
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Activation: SNc cell bodies were illuminated bilaterally (ChR2: 0.5-5 mW 425 nm blue LED 1353 

light; ChrimsonR 550 nm lime or 660 nm crimson) on 30% of trials (10 Hz, 10 or 20% duty 1354 

cycle starting at cue onset and terminating at first-lick). DAN terminals in DLS were 1355 

stimulated bilaterally via tapered fiber optics on separate sessions. 1356 

Inactivation: SNc cell bodies were illuminated bilaterally (stGtACR2: 12 mW 425 nm blue light) 1357 

on 30% of trials (constant illumination starting at cue onset and terminating at first lick).  1358 

 1359 

Quantification of optogenetic effects.  1360 

The difference in the distribution of trial outcomes between stimulated and unstimulated trials on 1361 

each session was quantified in four ways. 1362 

1. 2-Sample Unsigned Kolmogorov-Smirnov Test.  1363 

2. Difference in empirical continuous probability distribution function (cdf). The difference 1364 

in the integral of the stimulated and unstimulated cdf (dAUC) was calculated for each 1365 

session from 0.7-7 s. Effect size was quantified by permutation test, wherein the identity 1366 

of each trial (stimulated or unstimulated) was shuffled, and the distribution of dAUCs for 1367 

the permuted cdfs was calculated 10,000x. Results were reported for all sessions. 1368 

3. Difference in mean movement time. Movement times on stimulated and unstimulated 1369 

trials were pooled and the distribution of movement time differences was determined by 1370 

non-parametric bootstrap, in which a random stimulated and unstimulated trial were 1371 

drawn from their respective pools 1,000,000x and the difference taken. The mean of each 1372 

session’s bootstrapped distribution was compared across sessions by the 1,000,000x 1373 

bootstrapped difference of the mean between sessions of different categories. 1374 

4. Difference in median movement time. Same as above but with median. 1375 
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 1376 

Single-trial probabilistic movement state decoding model. 1377 

The probability of transitioning to a movement state, st=1, at time=t was decoded with a logistic 1378 

generalized linear model of the form: 1379 

p(st=1) = logit(bXt) 1380 

where Xt is a vector of predictors for the timepoint, t, and b is the vector of fit coefficients. The 1381 

vector of predictors was comprised of the GCaMP6f signal at every timepoint (the current time, t) 1382 

as well as the signal history, represented as 200 ms-wide signal averages moving back in time 1383 

from t. Previous trial history (n-1th and n-2th first-lick times and reward/no-reward outcomes) did 1384 

not contribute significantly to the model during model selection and were thus omitted (see 1385 

Model Selection, below). 1386 

 1387 

Movement state, st, was defined as a binary variable, where state=0 represented all timepoints 1388 

between the cue up until 160 ms before the first-lick detection (to exclude any potential peri-1389 

movement responses), and state=1 represented the timepoint 150 ms before the first-lick. 1390 

Because there were many more state=0 than state=1 samples in a session, state=0 points were 1391 

randomly down-sampled such that states were represented equally in the fit. To avoid randomly 1392 

sampling a particular model fit by chance, each dataset was fit on 100 randomly down-sampled 1393 

(bootstrapped) sets, and the average fit across these 100 sets was taken as the model fit for the 1394 

session. 1395 

 1396 



 68

GCaMP6f signals were smoothed with a 100 ms gaussian kernel and down-sampled to 100 Hz. 1397 

The GCaMP6f predictors were then nested into the model starting with those furthest in time 1398 

from the current timepoint, t: 1399 

 1400 

Nest 0:  b0 (Null model) 1401 

Nest 1:  b1 = b0 + mean GCaMP6f 1.8:2.0 s before current time=t 1402 

Nest 2:  b2 = b1 + mean GCaMP6f 1.6:1.79 s before current time=t 1403 

Nest 3:  b3 = b2 + mean GCaMP6f 1.4:1.59 s before current time=t 1404 

Nest 4:  b4 = b3 + mean GCaMP6f 1.2:1.39 s before current time=t 1405 

Nest 5:  b5 = b4 + mean GCaMP6f 1.0:1.19 s before current time=t 1406 

Nest 6:  b6 = b5 + mean GCaMP6f 0.8:0.99 s before current time=t 1407 

Nest 7:  b7 = b6 + mean GCaMP6f 0.6:0.79 s before current time=t 1408 

Nest 8:  b8 = b7 + mean GCaMP6f 0.4:0.59 s before current time=t 1409 

Nest 9:  b9 = b8 + mean GCaMP6f 0.2:0.39 s before current time=t 1410 

Nest 10:  b10 = b9 + GCaMP6f signal at current time=t 1411 

 1412 

Nesting the predictors from most distant in time to most recent permitted observation of the 1413 

ability of more proximal signal levels to absorb the variance contributed by more distant signal 1414 

history. 1415 

 1416 

The fitted hazard function was then found as the average probability of being in the movement 1417 

state across all trials in the session as calculated from the average model fit. Because st=0 states 1418 

were significantly downsampled during fitting, this rescaled the fit hazard. Thus, to return the fit 1419 
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hazard to the scale of the hazard function calculated from the behavioral distribution, both the fit 1420 

hazard and true hazard function were normalized on the interval (0,1), and the goodness of fit 1421 

was assessed by R2 comparison of the fit and true hazard functions. This metric was similar 1422 

between individual session fits as well as the grand-average fit across all animals and sessions. 1423 

 1424 

To guard against overfitting, this procedure was repeated on the same datasets, except the 1425 

datasets were shuffled before fitting to erase any non-chance correlations between the predictors 1426 

and the predicted probability of being in the movement state.  1427 

 1428 

Model selection 1429 

To evaluate the contribution of task performance history to the probability of being in the 1430 

movement state at time=t, we could not observe every timepoint in the GCaMP6f trial period 1431 

timeseries as we did in the final model because the trial history for a given timepoint was the 1432 

same for all other points in the trial; hence this created bias because the movement state=1 was 1433 

represented for all trials, but the likelihood of the a trial’s 0 state being represented after down-1434 

sampling was dependent on the duration of the trial (i.e., first-lick time). Consequently, model 1435 

selection was executed on a modified version of the model that ensured that each trial would 1436 

only be represented one time at most in the fit. Because this greatly reduced the power of the 1437 

model, model selection was conducted on sessions from the two animals with the highest S:N 1438 

ratio and most trials to ensure the best chance of detecting effects of each predictor (Figure 8—1439 

figure supplement 1). 1440 

 1441 
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The set of permutations of GCaMP6f signal and task history were fit separately, and the best 1442 

model selected by BIC (though notably AIC and AICc were in agreement with the BIC 1443 

selection). Each model was fit in “time-slices”—windows of 500 ms from the time of the cue up 1444 

until the first-lick. Only one point for each trial was fit within this window to ensure the 1445 

movement state within the window was uniquely represented. For each time-slice model, the 1446 

GCaMP6f signal for each trial was thus averaged within the time-slice window, and the 1447 

movement state was 1 only if the movement state occurred sometime within the window. The 1448 

model fit for a session was taken as the average model fit across each of the time-slices. Notably, 1449 

a time-slice required a sufficient number of trials to be present (either in the st=0 or terminating 1450 

in the movement state st=1) for the fit to converge; once the first-lick occurred for a trial, it did 1451 

not contribute data to later time-slices. The source data files for Figure 8—figure supplement 1 1452 

contain plots of all time-slice coefficient fits, including for models with insufficient numbers of 1453 

trials to converge. 1454 

 1455 

Code Availability. All custom behavioral software and analysis tools are available with sample 1456 

datasets at https://github.com/harvardschoolofmouse. 1457 

 1458 

Data Availability. All datasets supporting the findings of this study are publicly available (DOI: 1459 

10.5281/zenodo.4062749). Source data files have been provided for all figures. 1460 
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SUPPLEMENTAL FIGURES  1477 

 
Figure 1—figure supplement 1. Self-timed movement task learning and variations. (A) Task learning. 1478 
Histogram of first-lick times from single sessions at different stages of training (red: reaction, grey: early, 1479 
blue: operant-rewarded, yellow: Pavlovian-rewarded). Bars >50 first-licks truncated for clarity. (B) Mice 1480 
adjust behavior to the timing-contingencies of the task. First-lick time distributions from tasks with 1481 
different target timing intervals. Red: 3.3 s reward-boundary. Blue: 5 s reward-boundary (all sessions, all 1482 
mice). (C) Mice time their first-licks relative to the start cue, not the houselamp. First-lick time 1483 
distributions during behavior with (red) and without (black) houselamp events (4 mice, 4-5 1484 
sessions/mouse on each version of the task). Source data: Figure 1—source data. 1485 
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 1486 
 1487 
Figure 1—figure supplement 2. Fiber optic placement and histology. (A) Approximate fiber positions 1488 
for all mice. (B) Brightfield microscopy with polarized filter on a freshly cut brain slice showing bilateral 1489 
fiber placement at SNc (from stGtACR2 experiment). (C) Example of co-expression of green (DA2m,) and 1490 
red (tdTomato) fluorophores relative to fiber optic tip. 1491 
 1492 
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 1493 
Figure 2—figure supplement 1. Baseline correlation of dopaminergic signal with first-lick time is not 1494 
dependent on the duration of the lamp-off interval. (A) SNc GCaMP6f dopaminergic signals aligned to 1495 
the lamp-off event (n=12 mice, all 98 sessions). “Baseline:” 2 s interval before lamp-off event. (B) SNc 1496 
GCaMP6f dopaminergic signals aligned to the cue, all sessions. “LOI:” Lamp-Off-Interval between lamp-1497 
off and cue. (C) 14/98 sessions showed a small relationship between LOI duration and first-lick time 1498 
(R2 < 0.04 for 13/14 sessions, sign of correlation inconsistent among sessions). Omitting these 14 sessions 1499 
did not eliminate the Baseline or Lamp-Off Interval correlation between dopaminergic signal amplitude 1500 
and first-lick timing. Source data: Figure 2—source data 2. 1501 
  1502 
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Figure 2—figure supplement 2. dF/F method validation. (A) Left: slow, raw fluorescence bleaching 1542 
across one session. Left inset: Minimal bleaching occurs across the first 3 trials (~1 min). Right: dF/F 1543 
removes slow bleaching dynamics. Right inset: The same 3-trial window shown for dF/F signal. (B) 1544 
Average raw fluorescence on paired, consecutive trials from one session aligned to cue on the nth trial. 1545 
Left: n-1th trial was early, nth trial was rewarded (“ER” condition). Right: “RE” condition (See Methods: 1546 
dF/F method characterization and validation). (C) Comparison of baseline GCaMP6f signals on paired, 1547 
consecutive trials aligned to cue. Columns: three different versions of the signal (Raw fluorescence, 1548 
Normalized baseline dF/F method, Moving average dF/F method). Top row: ER condition; middle row: 1549 
RE condition; bottom row: distortion index. Red distortion index plot shows only Normalized baseline 1550 
method. Green distortion index plot shows overlay of Moving Average, Low-Pass Filter, and Multiple 1551 
Baseline dF/F Methods because the difference in signal distortion between these methods was 1552 
indistinguishable (See Methods: dF/F method characterization and validation). Source data: Figure 2—1553 
source data 3. 1554 
 1555 
 1556 
 1557 
 1558 
 1559 
 1560 
 1561 
 1562 
 1563 
 1564 
 1565 
 1566 
 1567 
 1568 
 1569 
 1570 
 1571 
 1572 
 1573 
 1574 
 1575 
 1576 
 1577 
 1578 
 1579 
 1580 
 1581 
 1582 
 1583 
 1584 
 1585 
 1586 
 1587 
 1588 
 1589 
 1590 
 1591 
 1592 



 77

 1593 
 1594 
 1595 
 1596 
 1597 
Figure 2—figure supplement 3. Average photometry signals, pooled every 250 ms by first-lick time, 1598 
spanning 0.5 s (purple) to 7 s (red). Signals in main panels aligned only to cue, not first-lick. (A) Average 1599 
DAN GCaMP6f signals at SNc cell bodies (12 mice). (B) DAN GCaMP6f signals at axon terminals in 1600 
DLS (10 mice). (C) Striatal dopamine detection with dLight1.1 at DLS (5 mice). (D) Striatal DA2m 1601 
signals at DLS (4 mice). (E) DAN GCaMP6f signals at VTA cell bodies (4 mice). (F) tdTomato signals. 1602 
Insets (left): Cue and lick-aligned average signals for a single time bin before first-lick to show pre-lick 1603 
ramping present in all dopaminergic signals. Left of axis break: aligned to cue. Right of axis break: 1604 
aligned to first-lick. Traces plotted up until 150 ms before first-lick. Source data: Figure 2—source data 1605 
4. 1606 

 1607 
 1608 
 1609 

Figure 3—figure supplement 1. Comparison of dLight1.1 (dashed) and DA2m (solid) kinetics 1610 
surrounding peak of unrewarded transient (first-lick: 0.5-3.3 s). Red line: ½ baseline-to-peak amplitude 1611 
for measuring decay t1/2 (see Methods). Source data: Figure 3—source data. 1612 
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 1613 
 1614 
Figure 4—figure supplement 1. Average tdTomato optical artifacts (aligned to first-lick time) 1615 
showed inconsistent directions even within the same session. Averages for all three types of artifact 1616 
(consistently up, “Up”; consistently down, “Down”; and not consistent “NC”) shown for all 1617 
sessions. Pie plots: Breakdown of average tdt artifact direction by session at each recording site. 1618 
Source data: Figure 4—source data. 1619 
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 1622 
 1623 
 1624 
 1625 
 1626 
 1627 
Figure 5—figure supplement 1. DAN signal encoding model parameterization and model selection. 1628 
(A) Schematic of photometry timeseries fit by encoding model. The lamp-off to first-lick interval was 1629 
excised from each trial in a session (top) and concatenated to produce the timeseries fit by the model 1630 
(bottom). (B) EMG spikes derivation: thresholding rectified EMG at 3 standard deviations (example trial). 1631 
(C) Optimized basis kernels to produce timing-independent features. (D) Schematic of Design Matrix for 1632 
timing-dependent features. (E) GCaMP6f model fits by nest iteration for example session. Shading: 1633 
model error simulated 300x. (F) Model loss by nest iteration. Green: mean loss for SNc GCaMP6f; red: 1634 
mean loss for tdTomato (tdt); grey lines: individual sessions; grey shading: timing-dependent nests. Left: 1635 
full-scale view of all datasets. Right: mean GCaMP6f and tdt loss compared on same scale. (G) Summary 1636 
of feature weights across SNc GCaMP6f (left) and tdt (right) models. Coefficient weights were rectified, 1637 
summed, and divided by the number of predictors per feature. 2x standard error bars (too small to see). 1638 
All features were significant in both GCaMP6f and tdt models. (H) Top: examples of the full timing-1639 
dependent model (nest 5) from additional mice for all recorded dopaminergic signals. Bottom: tdt control 1640 
channel fit. Model errors simulated 300x. Some mice show downward-going movement-related spikes at 1641 
SNc cell bodies (second panel). All mice showed downward-going movement-related spikes from SNc 1642 
terminals in DLS (middle panel). Source data: Figure 5—source data. 1643 
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 1644 
 1645 
 1646 
Figure 5—figure supplement 2. Principal component analysis (PCA) of the ramping interval (0.7 s up to 1647 
first-lick relative to cue). (A) Left: Variance explained by first 10 principal components (PC). Right: first 1648 
three principal components. Green line: mean PC, GCaMP6f recorded at SNc; Red line: mean PC, 1649 
tdTomato (tdt) recorded at SNc and VTA; Grey lines: single-session data. X-axis shown for longest-1650 
possible interpolated trial duration; trials of shorter duration were interpolated to have the same number of 1651 
samples for PCA.  (B) Example session data simulated with first 3 PCs. Noisy traces: actual averaged 1652 
GCaMP6f signals truncated at first-lick onset; Smooth traces: PC fits of the same trials. Source data: 1653 
Figure 5—source data. 1654 
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 1655 
 1656 
 1657 
Figure 6—figure supplement 1. Variations of the first-lick time decoding model. *: p<0.05, error bars: 1658 
95% confidence intervals. GCaMP6f threshold crossing time dominated every version of the model; n-1th 1659 
trial first-lick time was consistently the second-best predictor. Source data: Figure 6—source data. 1660 
 1661 
 1662 
 1663 
 1664 
 1665 
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 1666 
 1667 

Figure 6—figure supplement 2. Analysis of single-trial dynamics: Hierarchical Bayesian Ramp vs. Step 1668 
Modeling. (A) Schematic (see Methods: Hierarchical Bayesian Modeling of Single-trial Dynamics). (B) 1669 
Example fits from hierarchical model on 2 example single trials from the same epoch in a single session. 1670 
Green: SNc GCaMP6f single-trial signal, light grey shading: noise band, dark grey lines: model fits. Note 1671 
that the top trial is more frequently classified as a ramp, and the lower trial is more frequently classified as 1672 
a step. However, both the ramp and step models return intuitive and reasonable fits to both single-trial 1673 
signals. (C). Probability of model class across all trials. X axis: 0 indicates all probabilistic fits for a given 1674 
trial returned step-class models; 1 indicates all ramp-class models. Single sessions across mice showed 1675 
considerable uncertainty in model classification. Source data: Figure 6—source data. 1676 
 1677 

 1678 
 1679 
 1680 
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 1681 
 1682 

Figure 6—figure supplement 3. Geometric analysis of single-trial dynamics with Multiple Threshold 1683 
Modeling. (A) Left: linear ramp model, Right: discrete step model. Step positions drawn from uniform 1684 
distribution over the cue-to-first-lick interval. Low-, Mid- and High- level thresholds shown. (B) 1685 
Threshold-crossing time vs. first-lick time (“X-ing time vs. first-lick time”) for (from top to bottom) High-, 1686 
Mid- and Low-level thresholds. Left: simulation predictions for ramp and step models. Right: X-ing time 1687 
vs. first-lick time regression fit on single trials from 1 session (data from Figure 6A). The step model 1688 
predicts X-ing time vs. first-lick time does not change across threshold levels, whereas ramp model 1689 
predicts the slope of this relationship increases as threshold is raised. Single-trial GCaMP6f data exhibits 1690 
increasing X-ing time vs. first-lick time slope with increasing threshold level, consistent with the ramp 1691 
model but inconsistent with the step model. (C). X-ing time vs. first-lick time across all mice. Left 1692 
column: frequency of slope relationship across sessions, right column: variance explained. Source data: 1693 
Figure 6—source data. 1694 
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 1695 
 1696 
Figure 6—figure supplement 4. Assessing single-trial dynamics. (A) Single-trial signals aligned to discrete step 1697 
position as found by Bayesian step model do not exhibit discrete step dynamics. To best estimate step times, the two 1698 
animals with the highest GCaMP6f S:N were examined (Mouse B5 and B6). Left: 1 session, Right: average of 1699 
signals from both mice. (B) Variance of GCaMP6f signals across trials. Step times were computed by Bayesian step 1700 
model. An ideal step model predicts maximal variance at the 50th percentile step, but variance declined 1701 
monotonically on average. Grey lines: single sessions; black line: average. For detailed explanation, see Methods: 1702 
Single-trial variance analysis for discrete step dynamics. Source data: Figure 6—source data. 1703 
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Figure 7—figure supplement 1. Variations on measurements of optogenetic effects. (A) Strategy for 1704 
optogenetic targeting of DANs. (B) Comparison of four complementary metrics for addressing 1705 
optogenetic effects. Left: unsigned Kolmogorov-Smirnov Distance (KS-D) analysis of differences in first-1706 
lick time distribution. Center: signed, bootstrapped comparison of difference in area under the cdf curves 1707 
(dAUC). Right: mean and median bootstrapped difference in first-lick time. Source data: Figure 7—1708 
source data. 1709 
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 1710 
 1711 
Figure 7—figure supplement 2. Light-power calibration for optogenetic activation of DANs. In preliminary 1712 
experiments, DLS dopamine levels were monitored during the self-timed movement task, in which SNc DANs 1713 
were activated randomly on 30% of interleaved trials. Dashed vertical lines: first-lick time. Left: interleaved, 1714 
unstimulated trials (2 mice, 8 sessions). Middle: stimulated trials at the range of light levels used in the 1715 
activation experiments show slightly elevated DLS dopamine signals compared to interleaved, unstimulated 1716 
trials. First-lick timing was generally early-shifted in these sessions. Right: in a subset of preliminary 1717 
calibration sessions, stimulation light levels were increased to the point where rapid, nonpurposive limb/trunk 1718 
movements were observed throughout stimulation (1 mouse, 3 sessions). DLS dopamine signals show much 1719 
higher, sustained increases throughout stimulation. Ongoing body movements disrupted task participation. 1720 
Source data: Figure 7—source data. 1721 
 1722 
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 1723 
 1724 
Figure 7—figure supplement 3. Quantification of optogenetic effects with additional metrics. (A) KS-D 1725 
analysis: all sessions. “A”: activation sessions; “NO”: no opsin sessions; “I”: inhibition sessions. Filled 1726 
circles indicate significant difference between stimulated/unstimulated trials on single session (p<0.025, 1727 
2-sided, 2-sample KS test). Standard box plot, line: median, box: upper/lower quartiles; whiskers: 1.5x 1728 
IQR. (B) Left: bootstrapped dAUC Assay: all sessions, standard box plot as in (A). Filled circles: 1729 
significant difference on single session (p<0.025, 2-sided bootstrapped dAUC test, see Methods). Right: 1730 
comparison of dAUC in first-lick distributions across all sessions between groups. Error bars denote 1731 
bootstrapped 95% confidence interval (*: p<0.05). (C) Mean bootstrapped difference in first-lick time, 1732 
stimulated-minus-unstimulated trials, standard box plot as in (A). Left: single mice; Middle: single 1733 
sessions. Right: Comparison of mean difference in first-lick time across all sessions. Error bars denote 1734 
bootstrapped 95% confidence interval (*: p< 0.05). Source data: Figure 7—source data. 1735 
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 1736 
Figure 7—figure supplement 4. Optogenetic DAN stimulation does not cause or prevent licking. (A,B) 1737 
Stimulation-aligned lick-rate during control sessions. Animals were tested in 1-3 control sessions both 1738 
before exposure to the self-timed movement task (red) and in 1-2 control sessions after the end of 1739 
behavioral training (navy). Blue bar indicates stimulation period (3 s). Left: one session, Right: all 1740 
sessions. (A) Activation control sessions (no cues or rewards). Animals were head-fixed on the behavioral 1741 
platform and stimulated randomly at the same pace as the standard 3.3 s self-timed movement task. 1742 
Activation did not elicit immediate licking in any session. (B) Inhibition-control sessions (no cues, + 1743 
random rewards). Animals were head-fixed on the behavioral platform while receiving juice rewards at 1744 
random times. Inhibition did not prevent licking in any session. Source data: Figure 7—source data. 1745 
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 1746 
 1747 
Figure 8—figure supplement 1. Probabilistic movement time decoding model: model selection. (A) 1748 
Model schematic. To assess previous trial history on the same footing as dopaminergic signals, time t 1749 
during model selection was limited to a 500 ms “time-slice,” with each time-slice fit separately by the 1750 
model. Dopaminergic signals were averaged within each time-slice, such that each trial provided one and 1751 
only one dopaminergic measurement, one set of trial history terms, and one movement state per time slice 1752 
(see Methods: Single-trial probabilistic movement state decoding model, model selection). (B) Model fit 1753 
weights. Model ID: corresponds to the predictors included from the schematic. x-axis labels: the predictor 1754 
ID from the schematic. Predictor weights averaged across time-slices. (C) Model selection criteria. The 1755 
model omitting the previous trial history predictors (predictors #1-4) was consistently the best model as 1756 
selected by BIC, AIC and AICc (results similar across metrics, BIC shown alone for clarity). Source data: 1757 
Figure 8—source data. 1758 
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 1759 
 1760 
 1761 
Figure 8—figure supplement 2. Average Intertrial Interval (ITI) GCaMP6f signals aligned to most 1762 
recent previous lick-time. Signals plotted up to onset of next spontaneous, self-initiated lick during the ITI. 1763 
(1 mouse, 5 sessions, truncated 150 ms before lick). Source data: Figure 8—source data. 1764 
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